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Abstract

We extend the classical results on the Walras-core existence and

equivalence to an ambiguous asymmetric information economy; that is,

an economy where agents maximize Maximin Expected Utility (MEU).

The interest of considering ambiguity arises from the fact that, in the

presence of MEU decision making, there is no conflict between efficiency

and incentive compatibility (contrary to the Bayesian decision making).

Our new modeling of an ambiguous asymmetric information economy

necessitates new equilibrium notions, which are always efficient and

incentive compatible.
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1 Introduction

Modeling the market with uncertainty is of important academic significance

and realistic value in economics as most decision making is made under

uncertainty. Towards this direction, the Arrow-Debreu “state contingent

model” allows the state of nature of the world to be involved in the

initial endowments and payoff functions, which is an enhancement of

the deterministic general equilibrium model of Arrow-Debreu-McKenzie.

According to Arrow-Debreu, agents make contacts ex ante (in period one)

before the state of nature is realized and once the state is realized (in period

two) the contract is executed and consumption takes place. The issue of

incentive compatibility doesn’t arise in this model, as all the information

is symmetric. However, for the state contingent model to make sense

one must assume that there is an exogenous court or government that

enforces the contract ex post, otherwise agents may find it beneficial to

renege. Radner (1968, 1982) extended the analysis of Arrow and Debreu

by introducing asymmetric (differential) information. In particular, each

agent is now characterized by his own private information, a random initial

endowment, a random utility function and a prior. The private information

is modeled as a partition of a finite state space and the allocation of

each agent is assumed to be measurable with respect to his own private

information. This means that each agent only knows the atom of his

partition including the true state, but cannot distinguish those states

within the same atom when making decisions. The Walrasian equilibrium

notion in this model is called ‘Walrasian expectations equilibrium’, or WEE

in short. Along this line, Yannelis (1991) proposed a core concept, which

is called private core.1

The Walrasian expectations equilibrium and private core share some

interesting properties (in fact, the Walrasian expectations equilibrium

is a strict subset of the private core): without the assumption of free

disposal, whenever agents are Bayesian expected utility maximizers and

allocations are private information measurable, the two above notions are

both Bayesian incentive compatible and private information measurable

efficient (see Koutsougeras and Yannelis (1993) and Krasa and Yannelis

(1994)). However, these solution concepts are only efficient in the second

best sense; that is, they are only private information measurable efficient

1For a recent treatment of general equilibrium with asymmetric information, see the books
Glycopantis and Yannelis (2005) and Marakulin (2013a).
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allocations and may result in a possible welfare loss (recall that from

Holmstrom and Myerson (1983), we know that with the Bayesian expected

utility it is not possible to have allocations which are both first best efficient

and also incentive compatible). The existence of WEE in a free disposal

economy can be found in Radner (1968, 1982). However, the free disposal

WEE allocations may be not incentive compatible (see Glycopantis and

Yannelis (2005)). Furthermore, if we require non-free disposal, then a

WEE may not exist (see Einy and Shitovitz (2001)). Therefore, a natural

question arises:

Can one find an appropriate framework in the asymmetric

information economy such that the existence of equilibrium

and core notions continues to hold and furthermore, these

notions are both incentive compatible and first best efficient?

A crucial assumption in the frameworks of Radner (1968, 1982) and

Yannelis (1991) is that agents maximize Bayesian expected utilities.

Nevertheless, from Ellsberg (1961) (see also de Castro and Yannelis (2014)),

there is a huge literature which criticizes the Bayesian paradigm and

explores the non-expected utility theory. The maximin expected utility

of Gilboa and Schmeidler (1989) is one of the successful alternatives.

Indeed, recently de Castro, Pesce and Yannelis (2011, 2014) and de

Castro and Yannelis (2013) applied the maximin expected utility to an

asymmetric information economy with a finite number of states of nature,2

and introduced various core and Walrasian equilibrium notions. With the

maximin expected utilities, agents take into account the worst possible

state that can occur and choose the best possible allocations. de Castro,

Pesce and Yannelis (2011) proved that the ex ante equilibrium and core

notions based on the maximin expected utility, which are called maximin

expectations equilibrium (MEE) and maximin core (MC) therein, are

incentive compatible in the economy without free disposal. Moreover, it is

noteworthy that since the allocations are not required to be measurable

with respect to agents’ private information, MEE and MC allocations

are also first best efficient. Therefore, the conflict between efficiency and

incentive compatibility is solved in this new approach. More importantly,

2MEU is first applied to a general equilibrium model of an asymmetric information economy by
Correia-da-Silva and Hervés-Beloso (2009). They proved the existence of the ex ante Walrasian
equilibrium in an asymmetric information economy with maximin preferences and a finite state space.
However, their setup is different from ours and they do not consider the issue of incentive compatibility;
see also Correia-da-Silva and Hervés-Beloso (2012, 2014).
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de Castro and Yannelis (2013) showed that the conflict of incentive

compatibility and first best efficiency is inherent in the standard expected

utility decision making (Bayesian) and it is resolved only when agents

maximize the maximin expected utility (MEU). In particular, they proved

that the MEU is a necessary condition for efficient allocations to be

incentive compatible. The above work implies the fact that one has to

work with MEU if the first best efficiency is desirable. As a result, a

natural question arises:

Can one obtain the classical core-Walras existence and equiv-

alence results for asymmetric information economies where

agents are ambiguous (i.e., MEU maximizers) and also the

state space is not necessarily finite?

An affirmative answer to this question is of great importance because

not only this way one develops a new equilibrium theory where there is

no conflict between efficiency and incentive compatibility, but also such

positive results could become the main tool for applications in other fields

of economics.

The first aim of this paper is to prove the existence of the maximin

expectations equilibrium and maximin core in a non-free disposal economy

with countably many states of nature.3 Since there is a countable number

of states in the economy, the allocations are infinite dimensional. An

advantage of the ambiguous economy modeling is that it allows us to

view an asymmetric information economy as a deterministic economy with

infinite dimensional commodity spaces. Thus, we can directly apply known

results in the literature to obtain the existence of maximin expectations

equilibrium.4 As a corollary, we obtain that the consistency between

incentive compatibility and efficiency also holds with a countable number

of states.

The second aim of the current paper is to prove a core equivalence

theorem for an economy with asymmetric information where agents are

ambiguous (i.e., maximize MEU). In a finite agent framework and complete

information, Debreu and Scarf (1963) considered a sequence of replicated

3For a general equilibrium model with countably many states, see, for example, Hervés-Beloso,
Martins-da-Rocha and Monteiro (2009).

4On the contrary, one can not readily convert an asymmetric information economy with Bayesian
expected utility maximizers to an economy with infinite dimensional commodity spaces due to the
restriction of the private information measurability requirement. For some papers with infinite
dimensional commodity spaces, see, for example, Bewley (1972) and Podczeck and Yannelis (2008).
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economy and showed that the set of non-blocked allocations in every

replicated economy converges to the set of Walrasian equilibria. In Section

4, we follow the Debreu-Scarf approach and establish a similar equivalence

result for an equal treatment economy with asymmetric information, a

countable number of states and MEU preferences. In an atomless economy

with complete information, Schmeidler (1972), Grodal (1972) and Vind

(1972) improved the core-Walras equivalence theorem of Aumann (1964),

by showing that if an allocation is not in the core, then it can be blocked

by a non-negligible coalition with any given measure less than 1. Hervés-

Beloso, Moreno-Garćıa and Yannelis (2005a,b) first extended this result

to an asymmetric information economy with the equal treatment property

and with an infinite dimensional commodity space by appealing to the

finite dimensional Lyapunov’s theorem. Bhowmik and Cao (2012, 2013a)

obtained further extensions based on an infinite dimensional version of

Lyapunov’s theorem. All the above results rely on the Bayesian expected

utility formulation and therefore the conflict of efficiency and incentive

compatibility still holds despite the non atomic measure space of agents.5

Our Theorem 6 is an extension of Vind’s theorem to the asymmetric

information economy with the equal treatment property and a countable

number of states of nature, where agents behave as maximin expected

utility maximizers. Thus, our new core equivalence theorem for the

MEU framework, resolves the inconsistency of efficiency and incentive

compatibility.

Finally, we provide two characterizations for maximin expectations

equilibrium. In the complete information economy with finite agents,

Aubin (1979) introduced a new approach that at a first glance seems

to be different from the Debreu-Scarf; however one can show that they

are essentially equivalent. Aubin considered a veto mechanism in the

economy when a coalition is formed; in particular, agents are allowed to

participate with any proportion of their endowments. The core notions

defined by the veto mechanism, is called Aubin core and it coincides

with the Walrasian equilibrium allocations. The approach of Aubin has

been extended to an asymmetric information economy to characterize

the Walrasian expectations equilibrium (see for example Graziano and

Meo (2005), Hervés-Beloso, Moreno-Garćıa and Yannelis (2005b) and

Bhowmik and Cao (2013a)). Another approach to characterize the Wal-

5As the work of Sun and Yannelis (2008) indicates, even with an atomless measure space of agents
we cannot guarantee that WEE allocations are incentive compatible.
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rasian expectations equilibrium is due to Hervés-Beloso, Moreno-Garćıa

and Yannelis (2005a,b). They showed that the Walrasian expectations

equilibrium allocation cannot be privately blocked by the grand coalition in

any economy with the initial endowment redistributed along the direction

of the allocation itself. This approach has been extended to a pure exchange

economy with an atomless measure space of agents and finitely many

commodities, and an asymmetric information economy with an infinite

dimensional commodity space (e.g., see Hervés-Beloso and Moreno-Garćıa

(2008), Bhowmik and Cao (2013a,b)). Our Theorem 2 and 3 extended

these two characterizations to the asymmetric information economy with

ambiguous agents and with countably many states of nature.

The paper is organized as follows. Section 2 states the model of

ambiguous asymmetric information economies with a countable number of

states and discusses main assumptions. Section 3 introduces the maximin

expectations equilibrium and maximin core and proves their existence,

and contains two different characterizations of maximin expectations

equilibrium by using the maximin blocking power of the grand coalition.

Section 4 extends the maximin expectations equilibrium and maximin core

to an economy with a continuum of agents, and interprets the asymmetric

information economy with finite agents as a continuum economy with finite

types. In addition, two core-Walras equivalence theorems and an extension

of Vind’s result are given for an asymmetric information economy with

a countable number of states. Section 5 shows that maximin efficient

allocations are incentive compatible in economies with finite agents and

atomless economies with the equal treatment property. Section 6 collects

some concluding remarks and open questions. The appendix (Section 7)

contains all the main proofs.

2 Ambiguous Asymmetric Informa-

tion Economy

We define an exchange economy with uncertainty and asymmetric infor-

mation. The uncertainty is represented by a measurable space (Ω,F),

where Ω = {ωn}n∈N is a countable set and F is the power set of Ω. Let Rl
+

be the commodity space, and I = {1, 2, · · · , s} the set of agents.

For each i ∈ I, Fi is the σ-algebra on Ω generated by the partition
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Πi of agent i, which represents the private information.6 Let Πi(ω) be the

element in the partition Πi which contains ω. Therefore, if any state ω ∈ Ω

is realized, then agent i can only observe the event Πi(ω). The prior πi
of agent i is defined on Fi such that

∑
E∈Πi

πi(E) = 1 and πi(E) > 0

for every E ∈ Πi. Notice that πi is incomplete; that is, the probability

of each element in the information partition Πi is well defined, but not

the probability of the event {ω} for every ω ∈ Ω. Let ui(ω, ·) : Rl
+ → R+

be the positive ex post utility function of agent i at state ω from the

consumption space to the positive real line, and ei : Ω→ Rl
+ be i’s random

initial endowment.

Let E be an ambiguous asymmetric information economy, where

E = {(Ω,F); (Fi, ui, ei, πi) : i ∈ I = {1, . . . , s}}.

A price vector p is a nonzero function from Ω to Rl.7 We assume that

4 denotes the set of all price vectors, where

4 = {p ∈ (Rl)∞ : |
∑
ω∈Ω

l∑
j=1

p(ω, j)| = 1},

and p(ω, j) is the price of the commodity j at the state ω.

There are three stages in this economy: at the ex ante stage (t=0), the

information partition and the economy structure are common knowledge;

at the interim stage (t=1), each individual i learns his private information

Πi(ω) which includes the true state ω, and makes his consumption plan;

at the ex post stage (t=2), agent i receives the endowment and consumes

according to his plan.8

An allocation is a mapping x from I × Ω to Rl
+. For each i ∈ I, let

Li = {xi : xi(ω) ∈ Rl
+ and uniformly bounded for all ω ∈ Ω}

be the set of all random allocations of agent i.9 If xi ∈ Li and p ∈ 4,

6For more discussions on information partitions and σ-algebras, see, for example, Hervés-Beloso and
Monteiro (2013).

7The vector p is said to be nonzero if p is not a constant function of value 0, but it is possible that
p(ω) = 0 for some ω.

8We consider a pure exchange economy and have no production in our model as for example in
Marakulin (2013b). But the production sector can be included in the analysis and the results should
still hold. For simplicity of the exposition, we have not included production.

9That is, Li = l∞+ for each i ∈ I.
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we denote
∑

ω∈Ω p(ω) · xi(ω) as p · xi.
Suppose that x is an allocation. Then xi(ω) is a vector in Rl

+ for each

i ∈ I, which represents the allocation at the state ω. In addition, xi(ω, j)

denotes the allocation of commodity j at the state ω. An allocation x is

said to be feasible if
∑

i∈I xi =
∑

i∈I ei. That is, for each ω ∈ Ω,∑
i∈I

xi(ω) =
∑
i∈I

ei(ω).

The feasibility here indicates that the economy has no free disposal.

Assumption (E). 1. For each i ∈ I, ei is Fi-measurable.10

2. There exists some β > 0 such that for any ω ∈ Ω and 1 ≤ j ≤ l,

ei(ω, j) ≥ β.

3. There exists some γ > 0 such that for any ω ∈ Ω and 1 ≤ j ≤ l,∑
i∈I ei(ω, j) ≤ γ.

Assumption (E) is about the endowment. Condition (1) says that

each agent’s endowment should be measurable with respect to his private

information, otherwise the agent may disclose the true state from his

endowment. Condition (2) implies that for every agent i, ei is an interior

point of (Rl
+)∞ under the sup-norm topology. Condition (3) implies that

ei ∈ Li; that is, the resource of the economy is limited no matter what

the state is. This condition will be automatically satisfied if there are only

finitely many states.11

Assumption (U). 1. For each ω ∈ Ω and i ∈ I, ui(ω, ·) is continuous,

strictly increasing and concave.

2. For each i ∈ I and x ∈ Rl
+, ui(·, x) is Fi-measurable.12

3. For any a ∈ Rl
+ and K0 > 0 such that a(j) ≤ K0 for 1 ≤ j ≤ l,

there exists some K > 0 such that 0 ≤ ui(ω, a) ≤ K for any i ∈ I
and ω ∈ Ω. Let ui(ω, 0) = 0 for all i ∈ I and ω ∈ Ω.

Assumption (U) is about the utility. Conditions (1) and (2) are

standard in the literature. Condition (3) basically says that agents’ utility

cannot be arbitrarily large with limited goods. This condition can be

10Clearly, if ei is independent of ω, then it is Fi-measurable.
11Since the initial endowment is bounded, the value p · ei of the initial endowment ei is finite for any

agent i and price p.
12If ui is state independent, then it is automatically Fi-measurable.
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removed if Ω is finite: for each i ∈ I and ω ∈ Ω, ui(ω, a) is continuous at a,

if a is bounded, then ui(ω, ·) is bounded; since there are only finitely many

states, ui(ω, ·) is uniformly bounded among all ω. Moreover, the condition

ui(ω, 0) = 0 means that agents have no payoff if they have no consumption.

For every agent i, his private prior may be incomplete and the allocation

in Li is not required to be Fi-measurable. Thus, agents cannot evaluate

the allocation based on the Bayesian expected utility. In the current

paper, we will consider the maximin preference axiomatized by Gilboa

and Schmeidler (1989).13

Let Mi be the set of all probability measures on F which agree with

πi on Fi. That is,

Mi = {µ : F → [0, 1] : µ(E) = πi(E), ∀E ∈ Fi}.

Let Pi be a nonempty and convex subset of Mi, which is the set of priors

of agent i.

We assume that agent i is ambiguous on the set Pi and will take the

worst possible scenario when evaluating his payoff. In particular, for any

two allocations xi, yi ∈ Li, agent i prefers the allocation xi to the allocation

yi if

inf
µ∈Pi

∑
ω∈Ω

ui(ω, xi(ω))µ(ω) ≥ inf
µ∈Pi

∑
ω∈Ω

ui(ω, yi(ω))µ(ω).

For any allocation {xi}i∈I , the maximin ex ante utility of agent i is:

Vi(xi) = inf
µ∈Pi

∑
ω∈Ω

ui(ω, xi(ω))µ(ω).

The maximin interim utility of agent i with allocation xi at the state

ω is

vi (ω, xi) =
1

πi(Πi(ω))
inf
µ∈Pi

∑
ω1∈Πi(ω)

ui(ω1, xi(ω1))µ(ω1).

We will slightly abuse the notations by writing vi (ω, xi) = vi (E, xi) for

ω ∈ E ∈ Fi.

Remark 1. If Pi is a singleton set for each agent i, then the maximin

expected utility above reduces to the standard Bayesian expected utility. If

Pi = Mi, the set of all probability measures on F which agree with πi

13We can adopt the more general variational preferences axiomatized by Maccheroni, Marinacci and
Rustichini (2006), and all the results in Sections 3 and 4 will still go through.
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on Fi, then it is the maximin expected utility considered in de Castro and

Yannelis (2013). In the latter case, de Castro and Yannelis (2013) showed

that for any two allocations xi, yi ∈ Li, agent i prefers the allocation xi to

the allocation yi if:∑
Ei∈Πi

[ inf
ω∈Ei

ui(ω, xi(ω))]πi(Ei) ≥
∑
Ei∈Πi

[ inf
ω∈Ei

ui(ω, yi(ω))]πi(Ei).
14 (1)

Remark 2. It should be noted that the asymmetric information in a

Bayesian model comes from the private information measurability of

allocations. For example, if allocations are not required to be private

information measurable, then the framework of Radner (1968) reduces

to the standard Arrow-Debreu state-contingent model. In other words,

the private information measurability of allocations captures the infor-

mation asymmetry in a Bayesian model. Furthermore, despite the fact

that the Walrasian expectations equilibrium is incentive compatible (see

Koutsougeras and Yannelis (1993)), it may be only second best efficient

due to the private information measurability requirement of the allocations,

which is pointed out in the current paper (see Example 2 below) as well as

de Castro and Yannelis (2013).

In an ambiguity model, the information asymmetry is captured by

the maximin expected utility itself. In particular, priors are defined on

the information partition of each agent (while they are defined on the

whole state space Ω in a Bayesian model). Thus, it is natural to relax

the restriction of private information measurability of allocations in an

ambiguity model. In addition, we show that the maximin expectations

equilibrium is both first best efficient and incentive compatible.

The proposition below indicates that the maximin ex ante utility

function satisfies several desirable properties.

Proposition 1. If Assumption (U) holds, then Vi is increasing and

concave, continuous in the sup-norm topology, and lower semicontinuous

in the weak∗ topology.

Proof. See appendix.

14First, we use ‘inf’ in these two inequalities instead of ‘min’ used in de Castro and Yannelis (2013),
since there are infinite states here. The existence of infimum is guaranteed since the ex post utility
function is nonnegative. Thus the ex ante utility Vi is well defined. Second, although de Castro and
Yannelis (2013) only argued that these two inequalities are equivalent when there are finitely many
states, this observation is still true in our context.

11



3 Maximin Expectations Equilibrium

and Maximin Core

3.1 Existence of MEE and MC

In this section, we define the notions of maximin core (MC) and maximin

expectations equilibrium (MEE).

Given a price vector p, the budget set of agent i is defined as follows:

Bi(p) = {xi ∈ Li :
∑
ω∈Ω

p(ω) · xi(ω) ≤
∑
ω∈Ω

p(ω) · ei(ω)}.

Definition 1. An allocation x is said to be a maximin expectations

equilibrium allocation for the economy E, if there exists a price vector p

such that for any agent i ∈ I,

1. xi maximizes Vi(·) subject to the budget set Bi(p);

2. x is feasible.

The following definition of a core concept in the current context implies

that coalitions of agents cannot cooperate to become better off in terms of

MEU.

Definition 2. A feasible allocation x is said to be a maximin core

allocation for the economy E, if there do not exist a coalition C ⊆ I,

C 6= ∅, and an allocation {yi ∈ Li}i∈C such that

(i) Vi(yi) > Vi(xi) for all i ∈ C;

(ii)
∑

i∈C yi(ω) =
∑

i∈C ei(ω) for all ω ∈ Ω.

The allocation is said to be maximin efficient if C = I.

Remark 3. The notions of maximin expectations equilibrium, maximin

core and maximin efficiency in the above definitions correspond to the con-

cepts of Walrasian equilibrium, core and efficiency in the standard model.

If Bayesian expected utilities, instead of maximin expected utilities, are used

in Definition 1, and the private information measurability assumption is

imposed on allocations, then the solution concept is Walrasian expectations

equilibrium defined in Radner (1968, 1982). In particular, the Walrasian

expectations equilibrium is defined as follows: an allocation x = (x1, . . . , xs)

is said to be a Walrasian expectations equilibrium allocation for the
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economy E, if xi is an Fi-measurable mapping for each agent i and there

exists a price vector p such that for any agent i ∈ I,

1. xi maximizes agent i’s expected utility subject to the budget set Bi(p);

2.
∑

i∈I xi ≤
∑

i∈I ei.

The following example shows that MEE provides strictly higher

efficiency than the (free disposal) WEE allocations. Furthermore, we show

that the MEE is incentive compatible.

Example 1. 15 Consider the following economy with one commodity, the

agent space is I = {1, 2} and the state space is Ω = {a, b, c}. The initial

endowments and information partitions of agents are given by

e1 = (5, 5, 0),Π1 = {{a, b}, {c}};

e2 = (5, 0, 5),Π2 = {{a, c}, {b}}.

It is also assumed that for i ∈ I, ui(ω, xi) =
√
xi, which is strictly concave

and monotone in xi, and the priors for both agents are the same: µ({ω}) =
1
3

for every ω ∈ Ω.

Suppose that agents are both Bayesian expected utility maximizers. It

can be easily checked that there is no (non-free disposal) WEE. If we allow

for free disposal, x1 = (4, 4, 1) and x2 = (4, 1, 4) is a (free disposal) WEE

allocation with the equilibrium price p(a) = 0 and p(b) = p(c) = 1
2
.

However, this allocation is not incentive compatible (see Example 2 in

Section 5 for details).

If Pi = Mi for each i, and agents are maximin expected utility

maximizers, then there exists an MEE (y, p), where y1 = (5, 4, 1), y2 =

(5, 1, 4) and p(a) = 0, p(b) = p(c) = 1
2
.

If state b or c realizes, the ex post utility of agent 1 will be the same

in both Bayesian preference setting and maximin preference setting, since

x1(b) = y1(b) and x1(c) = y1(c). But if state a occurs, the ex post utility

of agent 1 with maximin preference will be strictly higher than that in the

Bayesian preference setting, since

x1(a) = 4 < 5 = y1(a).

15This example has been analyzed in Glycopantis and Yannelis (2005) in Bayesian preference setting
for the existence and incentive compatibility of Walrasian expectations equilibrium and private core, and
in Liu and Yannelis (2013) in maximin preference setting for the existence and incentive compatibility
of maximin core. See also Bhowmik, Cao and Yannelis (2014).
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Therefore, the maximin preference allows agents to reach higher efficiency.

The following lemma is standard, which shows that the set of maximin

expectations equilibrium allocations is included in the set of maximin core

allocations.

Lemma 1. The set of MEE allocations is a subset of the MC allocations,

and hence any maximin expectations equilibrium allocation is maximin

efficient.

This inclusion can be strict. It is clear that both the Arrow-Debreu

‘state contingent model’ and the deterministic general equilibrium model

are special cases of our model: if Fi = F = 2Ω for every i ∈ I, then

the maximin expected utility coincides with the Bayesian expected utility

and E is indeed the state contingent model; if Ω is a singleton, then E
is the deterministic model. Moreover, it is well known that in those two

models, the set of core allocations could strictly contain the set of Walrasian

equilibrium allocations.

We now turn to the issue of the existence of MEE.

Theorem 1. For an ambiguous asymmetric information economy E, if

Assumptions (E) and (U) hold, then there exists an MEE.

Proof. See appendix.

Based on Theorem 1 and Lemma 1, it is straightforward to show that

the set of maximin core allocations is also nonempty.

Corollary 1. Under the conditions of Theorem 1, a maximin core

allocation exists.

3.2 Equivalence Theorems

For the economy E , Hervés-Beloso, Moreno-Garćıa and Yannelis (2005b)

provided two equivalence results for the Walrasian expectations equilibrium

in terms of the private blocking power of the grand coalition, and Bhowmik

and Cao (2013a) extended this result to an asymmetric information

economy whose commodity space is a Banach lattice. We will follow this

approach and characterize the maximin expectations equilibrium. The

two theorems below correspond to Theorem 4.1 and 4.2 of Hervés-Beloso,

Moreno-Garćıa and Yannelis (2005b). The proofs are omitted since the

same argument can be followed here.
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For an allocation x = {xi}i∈I and a vector a = (a1, · · · , as) ∈ [0, 1]s,

consider the ambiguous asymmetric information economy E(a, x) which is

identical with E except for the random initial endowment of each agent i

given by the convex combination ei(ai, xi) = aiei + (1− ai)xi.

Definition 3. An allocation z is maximin dominated (or maximin

blocked by the grand coalition) in the economy E(a, x) if there exists a

feasible allocation y in E(a, x) such that Vi(yi) > Vi(zi) for every i ∈ I.

Theorem 2. The allocation x is an MEE in E if and only if x is not a

maximin dominated allocation in every economy E(a, x).

Definition 4. A coalition S ⊆ I maximin blocks an allocation x in the

sense of Aubin via y = {yi}i∈S if for all i ∈ S, there is some αi ∈ (0, 1] such

that Vi(yi) > Vi(xi) and
∑

i∈S αiyi ≤
∑

i∈S αiei. The Aubin maximin

core is the set of all feasible allocations that cannot be maximin blocked

by any coalition in the sense of Aubin. An allocation x is called Aubin

non-dominated if x is not maximin blocked by the grand coalition in the

sense of Aubin.

Theorem 3. The allocation x is an MEE in E if and only if x is not a

maximin dominated allocation in the sense of Aubin in the economy E.

4 A Continuum Approach

4.1 Basics

In this section, we introduce the maximin expectations equilibrium and

maximin core for an atomless economy. Let the atomless probability space

(T, T , λ) denote the agent space. We define an atomless ambiguous

asymmetric information economy as follows:

E0 = {(Ω,F); (Ft, ut, et, πt) : t ∈ T}.

An allocation in the continuum economy E0 is a mapping f from T × Ω

to Rl
+ such that f(·, ω) is integrable for every ω ∈ Ω and f(t, ·) ∈ l∞+ for λ-

almost all t ∈ T . The allocation is said to be feasible if
∫
T
f(t, ω) dλ(t) =∫

T
e(t, ω) dλ(t) for every ω ∈ Ω.

A coalition in T is a measurable set S ∈ T such that λ(S) > 0.

An allocation f is maximin blocked by a coalition S in the economy
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E0 if there exists some g : S × Ω → Rl
+ such that

∫
S
g(t, ω) dλ(t) =∫

S
e(t, ω) dλ(t) for every ω ∈ Ω, and Vt(g(t)) > Vt(f(t)) for λ-almost every

t ∈ S.

Definition 5. An allocation f is said to be the maximin core for the

economy E0 if it is not maximin blocked by any coalition.

Definition 6. An allocation f is said to be a maximin expectations

equilibrium allocation for the economy E0, if there exists a price vector p

such that

1. ft maximizes Vt(·) subject to the budget set Bt(p) for λ-almost all

t ∈ T ;

2. f is feasible.

4.2 A Continuum Interpretation of the Fi-

nite Economy

We associate an atomless economy Ec with the discrete economy E as in

Garćıa-Cutŕın and Hervés-Beloso (1993), Hervés-Beloso, Moreno-Garćıa

and Yannelis (2005a,b) and Bhowmik and Cao (2013a). The space of

agents in Ec is the Lebesgue unit interval (T, T , µ) such that T = ∪si=1Ti,

where Ti = [ i−1
s
, i
s
) for i = 1, · · · , s − 1 and Ts = [ s−1

s
, 1]. For each agent

t ∈ Ti, set Ft = Fi, πt = πi, ut = ui and et = ei. Thus, the maximin ex

ante utility Vt of agent t is Vi. We refer to Ti as the set of agents of type

i, and

Ec = {(Ω,F); (T,Fi, Vi, ei, πi) : i ∈ I = {1, · · · , s}}

is the economy with the equal treatment property. The allocations

in E and Ec are closely related: for any allocation f in Ec, there is an

corresponding allocation x in E , where xi(ω) = 1
µ(Ti)

∫
Ti
f(t, ω) dµ(t) for all

i ∈ I and ω ∈ Ω; conversely, an allocation x in E can be interpreted as an

allocation f in Ec, where f(t, ω) = xi(ω) for all t ∈ Ti, ω ∈ Ω and i ∈ I. f

is said to be a step allocation if f(·, ω) is a constant function on Ti for any

ω ∈ Ω and i ∈ I.

Analogously to the theorems in Hervés-Beloso, Moreno-Garćıa and

Yannelis (2005a,b), the next proposition shows that the maximin expecta-

tions equilibrium can be considered equivalent in discrete and continuum

approaches.
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Proposition 2. Suppose that Assumption (U) holds. Then we have the

following properties:

• If (x, p) is an MEE for the economy E, then (f, p) is the MEE for the

associated continuum economy Ec, where f(t, ω) = xi(ω) if t ∈ Ti.

• If (f, p) is an MEE for the economy Ec, then (x, p) is the MEE for

the economy E, where xi(ω) = 1
µ(Ti)

∫
Ti
f(t, ω) dµ for any ω ∈ Ω.

The proof is straightforward, interested readers may refer to Theorem

3.1 of Hervés-Beloso, Moreno-Garćıa and Yannelis (2005b).

4.3 Core Equivalence with a Countable Num-

ber of States

The core-Walras equivalence theorem has been recently extended to a

Bayesian asymmetric information economy. Specifically, Einy, Moreno and

Shitovitz (2001) showed that the Walrasian expectations equilibrium is

equivalent to the private core for atomless economies with a finite number

of commodities in a free disposal setting, Angeloni and Martins-da-Rocha

(2009) completed the discussion by proposing appropriate conditions which

guarantees the core equivalence result in non-free disposal context. Hervés-

Beloso, Moreno-Garćıa and Yannelis (2005a,b) and Bhowmik and Cao

(2013a) followed the Debreu- Scarf approach and showed that the set of

Walrasian expectations equilibrium allocations coincides with the private

core in the asymmetric information economy with the equal treatment

property, finitely many states and infinitely many commodities.

However, all these discussions focus on the asymmetric information

economy with Bayesian expected utilities and a finite state space. Our

aim here is to examine whether this result is still true when agents

are ambiguous (have maximin expected utilities) and the state space is

countable. The theorems below show that the core equivalence theorem

holds with either of the following conditions:

1. Maximin expected utility and finitely many states;

2. Maximin expected utility, countably many states and the equal

treatment property holds.

Theorem 4. Let Ω be finite in the atomless economy E0. Assume that

(E) and (U) hold. Then the set of MC allocations coincides with the set of

MEE allocations.
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We omit the proof since it is standard, interested readers may check

that the proof of the core equivalence theorem in Hildenbrand (1974) with

minor modifications still holds.

Theorem 5. Suppose Assumptions (E) and (U) hold. Let the step

allocation f be feasible in the associated continuum economy Ec. Then

f is an MEE allocation if and only if f is an MC allocation.

Proof. See appendix.

4.4 An Extension of Vind’s Theorem

Hervés-Beloso, Moreno-Garćıa and Yannelis (2005a,b) and Bhowmik and

Cao (2013a) extended Vind’s theorem to an asymmetric information

economy with the equal treatment property. Sun and Yannelis (2007)

established this theorem in an economy with a continuum of agents and

negligible asymmetric information. Below, we extend this result to the

atomless ambiguous asymmetric information economy with a countable

number of states of nature.

Theorem 6. Suppose that Assumptions (E) and (U) hold. If the feasible

step allocation f is not in the MC of the associated continuum economy Ec,
then for any α, 0 < α < 1, there exists a coalition S such that µ(S) = α,

which maximin blocks f .

Proof. See appendix.

5 Efficiency and Incentive Compati-

bility under Ambiguity

In this section, we will define a notion of maximin incentive compatibility,

and then prove that any maximin efficient allocation is maximin incentive

compatible.

First, we illustrate the incentive compatibility issue when agents adopt

Bayesian preferences.

Example 2. [Example 1 with Bayesian preference]

Recall Example 1 in Section 3.1: the agent space is I = {1, 2} and the state
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space is Ω = {a, b, c}. The initial endowments and information partitions

of agents are given by

e1 = (5, 5, 0),Π1 = {{a, b}, {c}};

e2 = (5, 0, 5),Π2 = {{a, c}, {b}}.

It is also assumed that for i ∈ I, ui(ω, xi) =
√
xi, which is strictly concave

and monotone in xi, and the priors for both agents are the same: µ({ω}) =
1
3

for every ω ∈ Ω.

Suppose that agents are Bayesian expected utility maximizers, and all

allocations are required to be private information measurable. The no-

trade allocation x1 = (5, 5, 0) and x2 = (5, 0, 5) is in the private core and

it is incentive compatible. Indeed, it has been shown in Koutsougeras and

Yannelis (1993) that private core allocations are always CBIC provided that

the utility functions are monotone and continuous.

This conclusion is not true in free disposal economies. Glycopantis and

Yannelis (2005) pointed out that private core and Walrasian expectations

equilibrium allocations need not be incentive compatible in an economy with

free disposal. In this example, x1 = (4, 4, 1) and x2 = (4, 1, 4) is a (free

disposal) WEE allocation with the equilibrium price p(a) = 0 and p(b) =

p(c) = 1
2
, and hence in the (free disposal) private core. However, this

allocation is not incentive compatible. Indeed, if agent 1 observes {a, b},
he has an incentive to report state c to become better off. Note that agent

2 cannot distinguish the state a from the state c. In particular, if state

a occurs, agent 1 has an incentive to report state c because his utility is

u1(e1(a) + x1(c) − e1(c)), which is greater than the utility u1(x1(a)) when

he truthfully reports state a. That is,

u1(e1(a) + x1(c)− e1(c)) = u1(5 + 1− 0) =
√

6 >
√

4 = u1(x1(a)).

Hence, the free disposal WEE allocation is not incentive compatible.

Note that in the above example, when agent 1 reports {c} and agent 2

reports {b}, there will be incompatible reports. To rule out such situations,

we make the following assumption.

Assumption (R). For any i ∈ I and Ei ∈ Πi, ∩i∈IEi = {ω} for some

ω ∈ Ω.

Remark 4. This assumption is only needed in this section. Assump-
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tion (R) above guarantees that there are no incompatible reports. The

assumption that the intersection is a singleton set is without loss of

generality. If {a, b} ⊆ ∩i∈IEi for two states a and b, then no one can

distinguish these two states and hence they can be combined as one state.

de Castro and Yannelis (2013) showed that their choice of maximin

expected utility is both sufficient and necessary for the incentive compat-

ibility of maximin Pareto efficient allocations. In this section, we shall

adopt the maximin expected utility considered in de Castro and Yannelis

(2013). That is, as in Remark 1, for any two allocation xi, yi ∈ Li, agent i

prefers the allocation xi to the allocation yi if∑
Ei∈Πi

[ inf
ω∈Ei

ui(ω, xi(ω))]πi(Ei) ≥
∑
Ei∈Πi

[ inf
ω∈Ei

ui(ω, yi(ω))]πi(Ei).

Below, we propose a notion of maximin incentive compatibility.

Definition 7. An allocation x is said to be maximin incentive com-

patible (MIC) if the following does not hold:

1. there exists an agent i ∈ I, and two events E1
i , E

2
i ∈ Πi;

2. ei(ω) + xi(b(ω)) − ei(b(ω)) ∈ Rl
+ for each ω ∈ E1

i and {b(ω)} =

(∩j 6=iΠj(ω)) ∩ E2
i ;

3.

inf
ω1∈E1

i

ui(ω1, yi(ω1)) > inf
ω1∈E1

i

ui(ω1, xi(ω1)),

where

yi(ω) =

ei(ω) + xi(b(ω))− ei(b(ω)), if ω ∈ E1
i ;

xi(ω), otherwise.

In other words, an allocation is maximin incentive compatible if it is

impossible for any agent to misreport the realized event and become better

off. That is, if the true event is E1
i and agent i reports E2

i , then the

allocation yi under the misreported event E2
i will not make him better off.

In this paper, we consider a partition model for the information

structure. Alternatively, one can also consider a type model.

Let Ω = Θ =
∏

i∈I Θi, where Θi is the private information set of agent i.

For any state ω ∈ Ω, ω = (θ1, θ2, . . . , θs), let Πi(ω) = {θi} × Θ−i, where

Θ−i is the set of states for all agents other than i. Then the maximin
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incentive compatibility can be described as follows, and Definitions 7 and

8 are equivalent.

Definition 8. An allocation x is MIC if for every agent i and two distinct

points θ̃i, θ̂i in Θi such that for every θ−i ∈ Θ−i,

yθ̃ii (θ̂i, θ−i) = ei(θ̃i) + xi(θ̂i, θ−i)− ei(θ̂i) ∈ Rl
+

and

inf
θ−i∈Θ−i

ui(θ̃i, xi(θ̃i, θ−i)) ≥ inf
θ−i∈Θ−i

ui(θ̃i, y
θ̃i
i (θ̂i, θ−i)).

Thus, an agent i cannot become better off in terms of maximin expected

utility by reporting θ̂i when his true state is θ̃i.

The following theorem shows that any maximin efficient allocation is

maximin incentive compatible.

Theorem 7. If Assumptions (E), (U) and (R) hold, then any maximin

efficient allocation in E is MIC.

Proof. See appendix.

Corollary 2. Under the conditions of Theorem 7, any MC or MEE

allocation is maximin incentive compatible.

Remark 5. There is a substantial literature on the mechanism design

under ambiguity; see, for example, Bodoh-Creed (2012), de Castro and

Yannelis (2013) and Bose and Renou (2014). Bodoh-Creed (2012)

considers a standard mechanism design environment except that agents

are ambiguity averse with preferences of the maxmin expected utility.

In particular, Bodoh-Creed (2012) assumes that each agent knows his

valuation but has ambiguous beliefs about the distribution of valuations

of the other agents which can be modeled by a convex set of priors,

while we consider the particular case that this set contains all possible

priors. There are significant differences between Bodoh-Creed’s paper and

ours. In particular, Bodoh-Creed (2012) focuses on the payoff equivalence

theorem and characterizes the revenue maximizing mechanism, which could

be constrained efficient (i.e., second best efficient). On the contrary, we

study the issue between the first best efficiency and incentive compatibility.

Remark 6. One could extend the result of Angelopoulos and Koutsougeras

(2015) on maximin value allocations to an ambiguous asymmetric infor-

mation economy with countably many states. By standard arguments, one
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could show that the maximin value allocation is maximin efficient, and

therefore, it is maximin incentive compatible by the above corollary.

6 Concluding Remarks

We presented a new asymmetric information economy framework, where

agents face ambiguity (i.e., they are MEU maximizers) and also the state

space is not necessarily finite. This new set up allowed us to derive new

core -Walras existence and equivalence results. It should be noted that

contrary to the Bayesian asymmetric information economy framework,

our core and Walrasian equilibrium concepts formulated in an ambiguous

asymmetric information economy framework are now incentive compatible

and obviously efficient. For this reason, we believe that our new results

will be useful to other fields in economics.

We would like to conclude by saying that the continuum of states and

modeling perfect competition as in Sun and Yannelis (2007, 2008), Sun, Wu

and Yannelis (2012, 2013) and Qiao, Sun and Zhang (2014), or modeling

the idea of informational smallness (i.e., approximate perfect competition)

in countable replica economies as in McLean and Postlewaite (2003), or

characterizing cores in economies where agents’ information can be altered

by coalitions as in Hervés-Beloso, Meo and Moreno-Garćıa (2014) in the

presence of ambiguity remain open questions and further research in this

direction seems to be needed.

7 Appendix

7.1 Proof of Proposition 1

It is clear that Vi is increasing and concave, we first show that it is weak∗

lower semicontinuous.

Suppose that the sequence {zk}k≥0 ⊆ Li, and zk → z0 in the weak∗

topology as k → ∞. Fix ε > 0. Since z0 ∈ Li = l∞+ , there exists some

positive number K0 > 0 such that z0(ω, j) < K0 for each 1 ≤ j ≤ l

and ω ∈ Ω. By Assumption (U.3), there exists some K > 0 such that

ui(ω, z
0(ω)) ≤ K for any ω ∈ Ω.

Suppose that Πi = {Em}m∈N. Then there exists some m0 sufficiently

large such that πi(∪1≤m≤m0Em) > 1 − ε
2K

. Let Ωm0 = ∪1≤m≤m0Em. Then
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we have

Vi(z
k)− Vi(z0) = inf

µ∈Pi

∑
ω∈Ω

ui(ω, z
k(ω))µ(ω)− inf

µ∈Pi

∑
ω∈Ω

ui(ω, z
0(ω))µ(ω)

≥ inf
µ∈Pi

∑
ω∈Ωm0

ui(ω, z
k(ω))µ(ω)− inf

µ∈Pi

∑
ω∈Ωm0

ui(ω, z
0(ω))µ(ω)

− inf
µ∈Pi

∑
ω/∈Ωm0

ui(ω, z
0(ω))µ(ω).

For the third term, we have

inf
µ∈Pi

∑
ω/∈Ωm0

ui(ω, z
0(ω))µ(ω) ≤ Kπi(Ω \ Ωm0) <

ε

2
.

Since zk weak∗ converges to z0 and Ωm0 is finite, zk(ω) converges to z0(ω)

for each ω ∈ Ωm0 . Thus, we have∣∣∣∣∣ inf
µ∈Pi

∑
ω∈Ωm0

ui(ω, z
k(ω))µ(ω)− inf

µ∈Pi

∑
ω∈Ωm0

ui(ω, z
0(ω))µ(ω)

∣∣∣∣∣ < ε

2

for k sufficiently large. As a result, Vi(z
k) − Vi(z0) > −ε for k sufficiently

large, which implies that Vi(·) is weak∗ lower semicontinuous.

Next we show that Vi is continuous in the sup-norm topology. The

proof is similar as the argument above.

Suppose that the sequence {zk}k≥0 ⊆ Li, and zk → z0 in the sup-

norm topology. Then {zk}k≥0 is uniformly bounded by some K0. By

Assumption (U.3), there exists some K > 0 such that ui(ω, z
k(ω)) ≤ K for

any k ≥ 0 and ω ∈ Ω. Following an analogous argument as in the proof

of the weak∗ lower semicontinuity, one can obtain a finite subset Ωm0 such

that πi(Ω
m0) > 1− ε

2K
. Then we have

∣∣Vi(zk)− Vi(z0)
∣∣ =

∣∣∣∣∣ inf
µ∈Pi

∑
ω∈Ω

ui(ω, z
k(ω))µ(ω)− inf

µ∈Pi

∑
ω∈Ω

ui(ω, z
0(ω))µ(ω)

∣∣∣∣∣
≤

∣∣∣∣∣ inf
µ∈Pi

∑
ω∈Ωm0

ui(ω, z
k(ω))µ(ω)− inf

µ∈Pi

∑
ω∈Ωm0

ui(ω, z
0(ω))µ(ω)

∣∣∣∣∣
+ sup

µ∈Pi

∑
ω/∈Ωm0

ui(ω, z
k(ω))µ(ω) + sup

µ∈Pi

∑
ω/∈Ωm0

ui(ω, z
0(ω))µ(ω).
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As in the above argument,

sup
µ∈Pi

∑
ω/∈Ωm0

ui(ω, z
k(ω))µ(ω), sup

µ∈Pi

∑
ω/∈Ωm0

ui(ω, z
0(ω))µ(ω) <

ε

2
;

and ∣∣∣∣∣ inf
µ∈Pi

∑
ω∈Ωm0

ui(ω, z
k(ω))µ(ω)− inf

µ∈Pi

∑
ω∈Ωm0

ui(ω, z
0(ω))µ(ω)

∣∣∣∣∣ < ε

2

for k sufficiently large. As a result,
∣∣Vi(zk)− Vi(z0)

∣∣ ≤ ε for k sufficiently

large, which implies that Vi(·) is continuous in the sup-norm topology.

7.2 Proofs in Sections 3 and 4

One can view an ambiguous asymmetric information economy E as a

complete information economy Ed = {(l∞+ , Vi, ei) : i ∈ I} with the agent

space I.16 That is, each agent i has the utility function Vi and the infinite

dimensional commodity space l∞+ . Given the initial endowment ei : Ω→ Rl
+

in the economy E , since Ω is countable, ei can be viewed as a point in the

infinite dimensional commodity space l∞+ of the deterministic economy Ed.
By Proposition 1, the utility function Vi is increasing, concave and norm

continuous, and lower semicontinuous in the weak∗ topology.

Given an allocation x = (x1, . . . , xs) ∈ l∞+ and a price p ∈ (l∞)◦, for

any agent i ∈ I,

p · xi =

∫
Ω

xi(ω)p(dω).

An equilibrium in Ed is a pair (x = (x1, . . . , xs), p) with xi ∈ l∞+ for each

i ∈ I and p ∈ (l∞)◦ such that

1. xi ∈ Bi(p) = {y ∈ l∞+ : p · y ≤ p · ei};

2. xi maximizes Vi(·) on the budget set Bi(p);

3.
∑

i∈I xi =
∑

i∈I ei.

It can be easily checked that if p ∈ l1, then the equilibrium (x, p) in the

economy Ed is also an MEE in the ambiguous asymmetric information

economy E .

16Let l∞ and l1 represent the spaces of all bounded sequences and all absolutely summable sequences,
respectively. Denote by (l∞)◦ the topological dual space of l∞.
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Since Vi is norm continuous, it is Mackey continuous with respect to the

Mackey topology τ(l∞, (l∞)◦) by Corollary 6.23 in Aliprantis and Border

(2006). Then the economy Ed has a competitive equilibrium (x∗, p∗) by

Propositions 5.2.3 and 5.3.1 in Florenzano (2003), where p∗ ∈ (l∞)◦.

Since Vi is lower semicontinuous in the weak∗ topology, it is also lower

semicontinuous in the Mackey topology τ(l∞, l1). By Theorem 2 in Bewley

(1972), we know that p∗ is indeed in l1. One can then normalize p∗ such

that ‖p∗‖1 = 1. Then it is clear that (x∗, p∗) is also a maximin expectations

equilibrium in the ambiguous asymmetric information economy E , which

proves Theorem 1.

If Ec is an atomless ambiguous asymmetric information economy, one

can also view Ec as an atomless complete information economy Ecd as above.

Then Theorems 5 and 6 follow from Theorems 3.2 and 3.3 in Hervés-Beloso,

Moreno-Garćıa and Yannelis (2005b).

7.3 Proof of Theorem 7

Recall that for any agent i, allocation z ∈ Li and event E ∈ Πi,

vi(E, z) = infω∈E ui(ω, z(ω)). Let {xi}i∈I be a maximin efficient allocation,

and assume that it is not maximin incentive compatible. Then there exist

an agent i ∈ I, and two events E1
i , E

2
i ∈ Πi such that

vi(E
1
i , yi) > vi(E

1
i , xi),

where

yi(ω) =

ei(ω) + xi(b)− ei(b), if ω ∈ E1
i , {b} = (∩j 6=iΠj(ω)) ∩ E2

i ;

xi(ω), otherwise.

For each j 6= i, define yj : Ω→ Rl
+ as follows:

yj(ω) =

ej(ω) + xj(b)− ej(b), if ω ∈ E1
i , {b} = (∩j 6=iΠj(ω)) ∩ E2

i ;

xj(ω), otherwise.

It can be easily checked that {yi}i∈I is feasible:

1. If ω ∈ E1
i and {b} = (∩j 6=iΠj(ω)) ∩ E2

i , then
∑

j∈I yj(ω) =∑
j∈I ej(ω)+

∑
j∈I xj(b)−

∑
j∈I ej(b) =

∑
j∈I ej(ω), since

∑
j∈I ej(b) =
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∑
j∈I xj(b).

2. If ω /∈ E1
i , then

∑
j∈I yj(ω) =

∑
j∈I xj(ω) =

∑
j∈I ej(ω).

We now show that agent i is better off and all other agents are not

worse off if considering the allocation y instead of x.

For agent i, if ω /∈ E1
i , then vi(ω, yi) = vi(ω, xi). In addition,

vi(E
1
i , yi) > vi(E

1
i , xi). Therefore, Vi(yi) =

∑
Ei∈Πi

vi(Ei, yi)πi(Ei) >∑
Ei∈Πi

vi(Ei, xi)πi(Ei) = Vi(xi).

For j 6= i and event Ej, if ω ∈ E1
i , then there exists a point b(ω) ∈

Ej∩E2
i such that ej(b(ω)) = ej(ω) and yj(ω) = ej(ω)+xj(b(ω))−ej(b(ω)) =

xj(b(ω)). Notice that uj(ω, yj(ω)) = uj(ω, xj(b(ω))) = uj(b(ω), xj(b(ω))).

If ω /∈ E1
i , then yj(ω) = xj(ω). Thus, we have

vj(Ej, yj) = min

(
inf

ω∈Ej ,ω∈E1
i

uj(ω, yj(ω)), inf
ω∈Ej ,ω /∈E1

i

uj(ω, yj(ω))

)
= min

(
inf

ω∈Ej ,ω∈E1
i

uj(b(ω), xj(b(ω))), inf
ω∈Ej ,ω /∈E1

i

uj(ω, xj(ω))

)
= inf

ω∈Ej ,ω /∈E1
i

uj(ω, xj(ω))

≥ inf
ω∈Ej

uj(ω, xj(ω))

= vj(Ej, xj).

Then Vj(yj) =
∑

Ej∈Πj
vj(Ej, yj)πj(Ej) ≥

∑
Ej∈Πj

vj(Ej, xj)πj(Ej) =

Vj(xj) for all j 6= i.

Since εyi → yi as ε → 1 in (Rl
+)∞ and Vi is continuous, there exists

ε ∈ (0, 1) such that

Vi(εyi) > Vi(xi) for all i ∈ C.

For all ω ∈ Ω, define

zj(ω) =

εyj(ω) if j = i;

yj(ω) + 1−ε
‖I−1‖yi(ω) if j 6= i.

Then Vi(zi) = Vi(εyi) > Vi(xi). Moreover, since ui(ω, ·) is strongly
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monotone, for all j 6= i

Vj(zj) = Vj(yj +
1− ε
‖I − 1‖

yi) > Vj(yj) ≥ Vj(xj). (2)

Notice that for every ω ∈ Ω,∑
i∈I

zi(ω) = εyi(ω) +
∑
j 6=i

yj(ω) + (1− ε)yi(ω)

=
∑
i∈I

yi(ω) =
∑
i∈I

ei(ω).

That is, z is feasible and by (2), Vi(zi) > Vi(xi) for any i. Thus, {xi}i∈I is

not maximin efficient, a contradiction.
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1 Introduction
Some of the most important developments in economics were related to modeling of
information and the study of its use by agents in certain economic situations. The intro-
duction of the rational expectations paradigm is a good example of such breakthroughs.
Rational expectation equilibrium (REE) theory offers a rigorous conceptual framework
to modeling the information conveyed by prices into the decision of economic agents.
The fact that prices may convey useful information to market participants is well known
at least since Hayek (1945). The main feature of REE is the requirement of consistency
of the optimal actions of economic agents and the information that those optimal ac-
tions reveal through prices.

Since its introduction, REE played a central role in the analysis of financial markets
and markets of contracts, more broadly. However, it has also attracted many criticisms,
especially related to its unrealistic requirements on the knowledge and sophistication
of economic agents; it is frequently argued that REE requires just too much rationality
to be credible. Despite the longevity of this conundrum, we still lack of an alternative.

Besides the unrealistic requirements on knowledge and sophistication of individu-
als, a much less debated problem of REE is the fact that sometimes it may fail to exist.
This fact was established by Kreps (1977), through an influential and well-known ex-
ample, which we revisit in Section 1.1 below.4 Many economists do not see lack of
existence as a legitimate economic problem. However, we are used to expect our mod-
els to be internally consistent. A model without equilibrium indicates a basic failure
of consistency, that hampers all analysis based on it. This problem of lack of exis-
tence led to considerable efforts to overcome it. In seminal papers, Radner (1979) and
Allen (1981) prove the generic existence of REE when individuals are Bayesians. For
decades, these generic existence results seemed to be satisfactory enough to more or
less ignore the problem.56

But if an equilibrium may fail to exist, isn’t this a sign that there are some problems
with the formulation of the concept? Connecting this with the unrealistic treatment of
information and rationality, isn’t it the case that we are simply not using the more
suitable model for information and behavior under uncertainty? This paper explores
this possible alternative.

As it turns out, the criticism of the usual model of behavior assumed for REE—
expected utility maximization—is even older and broader than the criticism to REE
itself. Indeed, dissatisfaction with the reigning Bayesian paradigm is as old as the
paradigm itself. Important criticisms of Savage (1954)’s expected utility theory go
back to Allais (1953), Ellsberg (1961) and others. However, no criticism has sub-
stantial impact without an alternative. To this date, the most successful alternative to
Bayesianism is the Maximin Expected Utility (MEU) model introduced by Gilboa and
Schmeidler (1989), which generated a huge literature on ambiguity aversion. In re-
cent years, ambiguity aversion models have led to interesting applications in finance,
macroeconomics, game theory and mechanism design, as we briefly discuss in Section

4Green (1977) also presented a different non-existence example of the rational expectations equilibrium.
5 For a history of rational expectations equilibrium, see Grossman (1981).
6Generic results are not satisfactory (not robust) because if one perturbs the utility functions or the initial

endowments, the equilibrium can fail.
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1.2 below. One of the purpose of this paper is to show that ambiguity aversion also
has an important impact on the way we understand rational expectations equilibrium
(REE).

We prove that a REE exists universally (not generically) for a general class of
preferences with ambiguity. Particularizing the preferences to MEU, we prove that the
REE is also efficient and further particularizing to a special kind of MEU, we show
that it is incentive compatible.7 For this, we present an alternative to the standard
rational expectations equilibrium of Radner (1979) and Allen (1981) where individuals
are ambiguous. Specifically, in our setup, agents maximize their maximin expected
utility conditioning on their own private information and also on the information the
equilibrium prices have generated.

The following reexamination of the financial example introduced by Kreps (1977)
clarifies our results.

1.1 Kreps’ example
Kreps (1977) provides a simple financial example that allows us to understand the heart
of our contribution. He assumes that there are two assets: a riskless asset that costs and
pays 1 and a risky asset that is sold at period t = 1 by the price p(ω) ∈ R+ and
pays V (ω) in period t = 2, where ω denotes the state of the world. There are two
individuals, both with utility U(c) = −e−c for the consumption of c units at t = 2.
Individual 1 knows whether V (ω) is distributed according to a normal with mean m1

and variance σ2 or according to a normal with meanm2 and variance σ2. Let s1 denote
the first distribution and s2, the second. That is, individual 1 knows which distribution
sj (j = 1, 2) governs V (ω). On the other hand, individual 2 only knows that the
distribution governing V (ω) is in the set S ≡ {s1, s2}, but he can infer s once he
observes the prices.8 To complete the description, assume that individual i is endowed
with kij units of the risky asset if sj occurs, for i, j ∈ {1, 2}. Endowments of the
riskless asset are constant and, therefore, ignored.

Now if an individual knows s and buys q units of the risky asset, his consumption
will be x(ω) = −p(ω) · q + (q + ki·) · V (ω), leading to the expected utility:

ui(s, x) = Es {− exp [− (−p · q + (q + ki·) · V )]} , (1)

where Es denotes expectation with respect to s ∈ {s1, s2}. As natural, we assume that
the price p(ω) depends only on s and write p(ω) = pj if s = sj , j = 1, 2. Given the
normality of the risky asset returns, we have for j = 1, 2:

ui(sj , x) = − exp

[
pq −mj (q + kij) +

σ2

2
(q + kij)

2

]
, (2)

which leads to the following optimal quantity if the individual knows which s obtains:

qij =
mj − pj
σ2

− kij , for i = 1, 2 and s = sj , j = 1, 2. (3)

7See the preference definition in section 2.3 and a discussion about it in subsection 7.2.
8Nothing changes in the analysis if we assume that individual 2 considers all convex combinations of s1

and s2 as possible.
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Let us consider the case in which both individuals are Bayesian. If individual 2 is
uniformed, that is, p1 = p2, then he considers a mixture of normals (s1 and s2). In
any case, his optimal choice, although not given by (3), is a single quantity q21 = q22.
Kreps first observes that if m1 6= m2 and k1j = 0, for j = 1, 2 then prices cannot be
uninformative, that is, we cannot have p1 = p2. Indeed, in this case q11 6= q12, but
since q2j = −q1j , this would imply q21 6= q22, contradicting the previous observation.9

Thus, assume that p1 6= p2 and individual 2 is informed, that is, all choices are
given by (3). Kreps notes that if m1 = 4, m2 = 5, k21 = 2, k22 = 4 and σ2 = 1, then
p1 = p2 = 3, which contradicts p1 6= p2. This contradiction shows that no rational
expectations equilibrium exists.

Let us now observe what happens with our MEU formulation. Under full informa-
tion, there is no ambiguity and the individuals’ behaviors are exactly as above. How-
ever, in the case that 2 is uniformed (p1 = p2), then he faces ambiguity and takes
the worst-case scenario in his evaluation. He is, therefore, indifferent among a set of
different quantities qij—in particular, he is indifferent among quantities that promises
utilities above the minimum between the two states.10 Which among his equally good
quantities will be selected? It is standard to think that a Walrasian auctioneer selects
the quantity that clears the market, but the information about the quantity chosen by
the Walrasian auctioneer is available to the individual only after all choices are made
and, therefore, cannot affect his behavior.11 This means that the restriction q21 = q22

used above no longer holds. He could receive different quantities on different states.
For example, an equilibrium with the above parameters would be p1 = p2 = 3 and
q21 = −1 and q22 = −2.

As the reader has noticed, the crucial property is the individual’s indifference among
many bundles. This indifference between allocations leads to an important departure
from the Bayesian case. Early works, such as Dow and Werlang (1992), have explored
this indifference. Note also that the property described that the individual does not
know how many units he will actually receive is not an artifact of our model. In real
world markets, this is almost always true. Once a trader submits an order, especially big
ones, he does not know how many actual units will be traded and, when he learns that,
the trade is already completed. In dark pools, this separation between the price and
the volume information is even more pronounced, and our model and above discussion
seems even more relevant.

Remark 1.1 Notice that in the original Kreps’ model, private information measurabil-
ity of the quantities play a crucial role in the failure of existence, as we pointed out
in footnote 9. Basically, the problem is that if prices do not reveal information, we
may end up requiring that quantities bought in different states be different, but this is
possible only if prices do reveal information. The requirement of measurability makes
sense if each individual is buying the quantity itself, but it is natural to dispense with

9 Another way of describing the same problem is to think that the decision on quantities is measurable
with respect to the information partition that the individual has after observing prices. We comment more on
this in Remark 1.1 below.

10Note that he is indifferent taking in account the information that he has when making decisions. Obvi-
ously, he is not indifferent ex post.

11 Agents are not allowed to retrade after receiving their quantities delivered by the auctioneer.

3



this restriction if we see this as a negotiation of contracts in the interim period, whose
quantities are finally determined in the ex post period. Relaxation of private informa-
tion measurability is also an important ingredient in our theory (please see discussion
in Sections 2.5 and 7.1).

1.2 Relevant literature
Our paper belongs to the growing literature that applies ambiguity aversion to revisit
old puzzles and facts that were not well understood under the Bayesian framework,
but could be successfully explained using ambiguity aversion. Our contribution shows
a new feature of ambiguity aversion that highlights the usefulness of these models
established by previous papers in many different applications.

Hansen and Sargent (2001) establishes a link between the maximin expected utility
and the robust control theory and opens the avenue for applications of the MEU theory
in macroeconomics issues.

Caballero and Krishnamurthy (2008) used a MEU model to study flight to quality
episodes, which are an important source of financial and macroeconomic instability.
Given the repeated occurrence of such crises and their economic impact, this is an
important topic of investigation. Their MEU model is able to explain crisis regularities
such as market-wide capital immobility, liquidity hoarding and agents’ disengagement
from risk.

Epstein and Schneider (2007) consider portfolio choices and the effect of changes
in confidence due to learning for Bayesian and ambiguity averse agents. They show
that ambiguity aversion induces more stock market participation and investment in
comparison to Bayesian individuals. A variation on this topic is pursued in Epstein
and Schneider (2008), that assumes that investors perceive a range of signal precisions,
and evaluate financial decisions with respect to worst-case scenarios. As a result, good
news is discounted, while bad news is taken seriously. This implies that expected
excess returns are thus higher when information quality is more uncertain. They are
also able to provide an explanation to the classic question in finance of why stock prices
are so much more volatile than measures of the expected present value of dividends.
The recent work by Epstein and Schneider (2010) discusses how ambiguity aversion
models have implications for portfolio choice and asset pricing that are very different
from those of the standard Bayesian model. They also show how this can explain
otherwise puzzling features of the data.

Condie and Ganguli (2011a) studied rational expectations equilibria with ambiguity
averse decision makers. They show that partial revelation can be robust in a MEU
model, while Condie and Ganguli (2011b) established full revelation for almost all sets
of beliefs for Choquet expected utility with convex capacities.

Perhaps one of the more interesting set of implications of ambiguity aversion mod-
els has been obtained by Ju and Miao (2012). They calibrated a smooth ambiguity
model that matches the mean equity premium, the mean risk-free rate and the volatility
of the equity premium. Their model also allows to explain many curious facts previ-
ously observed in the data, such as the procyclical variation of price-dividend ratios,
the countercyclical variation of equity premia and equity volatility, the leverage ef-
fect and the mean reversion of excess returns. All these results hinge crucially on the
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pessimistic behavior of ambiguity averse agents.
Ilut and Schneider (2012) use ambiguity aversion to study business cycle fluctua-

tions in a DSGE model. They show that a loss of confidence about productivity works
like “unrealized” bad news. This time-varying confidence can explain much of business
cycle fluctuations.

Hansen and Sargent (2012) define three types of ambiguity, depending on how
the models of a planner and agents differ. All these variations are departures from
the standard rational expectations Bayesian model, where planner and agents share
exactly the same model. They compute a robust Ramsey plan and an associated worst-
case probability model for each of three types of ambiguity and examine distinctive
implications of these models.

With respect to the standard REE literature, it is well known by now that the
Bayesian REE as formulated by Radner (1979), Allen (1981) and Grossman (1981)
exists only generically.

The description of differential information via a partition of the state space was
used by Radner (1968) and Allen (1981). In contrast, Radner (1979) and Condie and
Ganguli (2011a) use a model based on signals, similar to the one described above.
(Allen and Jordan, 1998, p. 7-8) discuss the reinterpretation of this kind of model in
Allen (1981)’s partition model. In particular, Radner (1979) and Condie and Ganguli
(2011a) fix a “state-dependent utility” in the terminology of Allen (1981) and specify
various economies by the appropriate notion of conditional beliefs. Radner (1979) de-
scribes signals as providing information on the conditional probability distribution over
a set of states. All information in Radner (1979) is obtained by knowing everyone’s
joint signal.

As such, the partitions observable by traders are over the space of joint signals as
opposed to the state space over which consumption occurs. Radner calls these con-
sumption states the “payoff-relevant part of the environment” (top of page 659). If an
individual receives signal ti then he knows that the joint signal is in the set of joint
signals for which he receives the signal ti. This imposes additional structure on the
types of partitions over the signal space that agents observe.

In a series of papers, Correia-da Silva and Hervés-Beloso (2008, 2009, 2012, 2014);
Angelopoulos and Koutsougeras (2015); Zhiwei (2014, 2015); de Castro, Yannelis, and
Zhiwei (2015); Bhowmik, Cao, and Yannelis (2014) introduced economies with uncer-
tain delivery, where agents negotiate contracts that are not measurable with respect to
their information. As in our paper, agents may receive bundles that were supposed
to be delivered in different states of nature. Those papers are perhaps the closest to
our research. In particular, Correia-da Silva and Hervés-Beloso (2009) proved an exis-
tence theorem for a Walrasian equilibrium for an economy with asymmetric informa-
tion, where agents’ preferences are represented by maximin expected utility functions.
Their MEU formulation is in the ex-ante sense. This seems to be the first application of
the MEU to the general equilibrium existence problem with asymmetric information.
Since they work with the ex-ante maximin expected utility formulation, their results
have no bearing on ours. Finally, there are several game theoretical applications, e.g.
Bodoh-Creed (2012) and Aryal and Stauber (2014) where it is shown that ambiguity
provides new insights.
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1.3 Organization of the paper
The paper is organized as follows: in Section 2 we describe the economic model and
define the two sets of preferences that we consider in our paper. In Section 3 we de-
fine and compare the standard Bayesian REE and our maximin REE (MREE). Section
4 establishes the existence of MREE. Sections 5 and 6 deal respectively with the ef-
ficiency and incentive compatibility of maximin REE. Some concluding remarks and
open questions are collected in Section 7. The appendix (Section 8) collects longer
proofs.

2 Model—Differential Information Economy

2.1 Differential information economy
We consider an exchange economy under uncertainty and asymmetrically informed
agents. The uncertainty is represented by a measurable space (S,F), where S is a
finite set of possible states of nature and F is the algebra of all the events, i.e., F
is S’s power set. Let R`+ be the commodity space and I be a set of n agents, i.e.,
I = {1, . . . , n}. A differential information exchange economy E is the following
collection:

E = {(S,F); (Fi, ui, ei)i∈I},

where for all i ∈ I

- Fi is a partition of S, representing the private information of agent i. The inter-
pretation is as usual: if s ∈ S is the state of nature that is going to be realized,
agent i observes Fi(s), the unique element of Fi containing s. By an abuse of
notation, we still denote by Fi the algebra generated by the partition Fi.

- a random utility function (or state dependent utility) representing his (ex post) pref-
erences:

ui : S × R`+ → R
(s, x) → ui(s, x).

We assume that for all s ∈ S, ui(s, ·) is continuous and monotone.

- a random initial endowment of physical resources represented by a function ei :
S → R`+.

For some results (but not for our existence Theorem 4.1), we will need the follow-
ing:

Assumption 2.1 For each i ∈ I , ei(·) is Fi-measurable.

We discuss this assumption, the interpretation of the above economy and its timing
in Section 2.4 below.
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We use the following notations. For two vectors x = (x1, . . . , x`) and y =
(y1, . . . , y`) in R`, we write x ≥ y when xk ≥ yk for all k ∈ {1, . . . , `}; x > y
when x ≥ y and x 6= y; and x � y when xk > yk for all k ∈ {1, . . . , `}. A function
u : R`+ → R is (strictly) monotone if for all x, y ∈ R`+, (x > y) x � y implies that
u(x) > u(y); and it is (strictly) quasi-concave if for all x, y ∈ R`+ and all α ∈ (0, 1) we
have that (u(αx+(1−α)y) > min{u(x), u(y)}) u(αx+(1−α)y) ≥ min{u(x), u(y)}.
Given two sets A and B, the notation A \ B refers to the set-theoretic difference, i.e.,
A \ B = {a : a ∈ A and a /∈ B}. Finally σ(ui) ⊆ Fi refers to ui(·, t) is Fi-
measurable for all t ∈ R`+; and σ(ui, ei) ⊆ Fi means that ui(·, t) and ei(·) are Fi-
measurable for all t ∈ R`+. Notice that if σ(ui, ei) ⊆ Fi for all i ∈ I , in particular
Assumption 2.1 holds.

A price p is a function from S to R`+. In some references, a price is defined as
a non-zero function from S to R`+, meaning that for some s (not necessarily for all s)
p(s) > 0. However, with standard arguments it can be proved that if there is at least
one agent i such that ui(s, ·) is monotone for all s ∈ S, then the equilibrium price p is
positive in any state (i.e., p(s) > 0 for any s ∈ S). Moreover, if p : S → ∆, where ∆
is the (`−1)-dimensional unit simplex in R`+, (as defined for example in Allen (1981))
then in particular p(s) > 0 for any s ∈ S. Thus, since throughout the paper we assume
that ui(s, ·) is monotone for all s ∈ S and all i ∈ I , the equilibrium price p is positive
in each state, i.e., p : S → R`+ \ {0}.

In order to introduce the rational expectation notions in Section 3, we need the
following notation. Let σ(p) be the smallest sub-algebra of F for which p(·) is mea-
surable and let Gi = Fi∨σ(p) denote the smallest algebra containing bothFi and σ(p).

A function x : I × S → R`+ is said to be a random consumption vector or
allocation.

For each i, the function xi : S → R`+ is said to be an allocation12 of agent i, while
for each s, the vector xi(s) ∈ R`+ is a bundle of agent i in state s. We denote by Li the
set of all i’s allocations, moreover let L̄i and LREEi be the following sets:

L̄i = {xi ∈ Li : xi(·) is Fi−measurable}. (4)
LREEi = {xi ∈ Li : xi(·) is Gi−measurable}. (5)

Clearly, for each agent i ∈ I , since any Fi-measurable allocation is also Gi-
measurable, it follows that L̄i ⊆ LREEi ⊆ Li, and hence L̄ ⊆ LREE ⊆ L, where
L =

∏
i∈I Li, L̄ =

∏
i∈I L̄i and LREE =

∏
i∈I L

REE
i .

An allocation x (i.e., x ∈ L) is said to be feasible13 if∑
i∈I

xi(s) =
∑
i∈I

ei(s) for all s ∈ S.

12 For simplicity, we will often use the symbol xi(s) ∈ R`
+ to denote x(i, s) ∈ R`

+. Similarly, xi(·)
refers to the function x(i, ·) : S → R`

+. Finally, x(s) refers to the function x(·, s) : I → R`
+.

13 We assume the so-called exact feasibility because it is well known that incentive compatibility may fail
under the free disposal condition.
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We will describe the agents’ preferences below. The above structure, including
each agent’s preference, is common knowledge for all agents.

2.2 Bayesian Expected utility
We define now the interim expected utility. To this end, we assume that each individual
i ∈ I has a known probability πi on F , such that πi(s) > 0 for any s ∈ S. For any
partition Π ⊂ F of S and any allocation xi : S → R`+, agent i’s interim expected
utility function with respect to Π at xi in state s is given by

vi(xi|Π)(s) =
∑
s′∈S

ui(s
′, xi(s

′))πi(s
′|s),

where

πi(s
′|s) =

0 for s′ /∈ Π(s)
πi(s

′)

πi

(
Π(s)

) for s′ ∈ Π(s).

We can also express the interim expected utility as follows

vi(xi|Π)(s) =
∑

s′∈Π(s)

ui(s
′, xi(s

′))
πi(s

′)

πi
(
Π(s)

) . (6)

Notice that the interim expected utility function vi is well defined since we have
assumed that for each i ∈ I and s ∈ S, πi(s) > 0, therefore πi(Π(s)) > 0.

In the applications below, the partition Π will be agent-dependent, being the origi-
nal private information partition Fi or, more frequently, the partition generated also by
the prices, Gi = Fi ∨ σ(p).

2.3 Preferences that allow for ambiguity
In this section, we discuss preferences which allow for ambiguity. The most general
case just requires continuity and monotonicity. To define this, let Πi ⊂ F be a partition
of S representing the information available to individual i. The preferences of each
individual i, with private information Πi in state s are represented by Vi(·,Πi, s) such
that given xi, yi ∈ Li

(∗) If ui(s
′, xi(s

′)) ≥ ui(s′, yi(s′)) for all s′ ∈ Πi(s) then Vi(xi,Πi, s) ≥ Vi(yi,Πi, s)

(∗∗) If Πi(s) = {s}, then Vi(xi,Πi, s) = ui(s, xi(s)).

The above consistency requirements between interim and ex-post preferences14

14Notice that condition (∗) implies Axiom 4 in de Castro, Pesce, and Yannelis (2011). imply the existence
of a continuous and monotonic function A : R|Πi(s)| → R such that:

Vi(xi,Πi, s) = A((ui(s
′, xi(s

′))s′∈Πi(s)). (7)

(see Proposition 2.2 in de Castro, Pesce, and Yannelis (2011)).
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Note that standard Bayesian preferences will satisfy (7). Therefore, (7) is not re-
stricted to ambiguous preferences. We will further particularize the preferences to
include that of Gilboa and Schmeidler (1989).

Let Csi be the set of all probabilities with support contained on Πi(s).15 Let Ms
i

be a non empty, closed and convex subset of Csi which is the set of priors for agent i.
We assume that agent i is ambiguous on the setMs

i and he will take the worst possible
scenario when evaluating his payoff. For any two allocations xi, yi ∈ Li; agent i
prefers xi to yi if

inf
µ∈Ms

i

Eµ [ui(·, xi(·))] ≥ inf
µ∈Ms

i

Eµ [ui(·, yi(·))] .

Thus, for any allocation xi ∈ Li the utility of agent iwith respect to the information
Πi in state s is:

uΠi
i (s, xi) = inf

µ∈Ms
i

Eµ [ui(·, xi(·))] . (8)

In the case of state independent utility, (8) represents the seminal conditional pref-
erences in the Gilboa-Schmeidler form. For this reason we call it maximin expected
utility (MEU).

Remark 2.1 IfMs
i is a singleton set then the maximin expected utility (MEU) reduces

to the standard Bayesian expected utility. IfMs
i = Csi then it is the maximin expected

utility considered in de Castro and Yannelis (2011) where it is shown that

inf
µ∈Csi

Eµ [ui(·, xi(·))] = min
s′∈Πi(s)

ui(s
′, xi(s

′)).

We will adopt the model of de Castro and Yannelis (2011) so that the utility of each
agent i with respect to Πi at the allocation xi in state s is:

uΠi
i (s, xi) = min

s′∈Πi(s)
ui(s

′, xi(s
′)). (9)

It is proved in de Castro and Yannelis (2011) that efficient allocations are incentive
compatible if and only if individuals’ preferences are represented by (9). Moreover, as
we note in Subsection 2.5, if agents’ utility is given by (9), the requirement that alloca-
tions may not be private information measurable is justified. This is crucial in proving
the existence of a rational expectations equilibrium (see Example 3.3 and Theorem
4.1). However, all results, except incentive compatibility, holds true for the general
MEU formulation (8).

Whenever for each agent i the partition Πi is his private information partition Fi,
then we do not use the superscript, i.e.,

ui(s, xi) = min
s′∈Fi(s)

ui(s
′, xi(s

′)).

15In particular this means that for any µ ∈ Csi , µ(s′) = 0 for any s′ /∈ Πi(s) and
∑

s′∈Πi(s) µ(s′) = 1.
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On the other hand, when we deal with the notion of rational expectations equilib-
rium (according to which agents take into account also the information that the equi-
librium prices generate), then for each agent i the partition Πi is Gi and the maximin
utility is defined as

uREEi (s, xi) = min
s′∈Gi(s)

ui(s
′, xi(s

′)), where Gi = Fi ∨ σ(p).

2.4 Timing and Budget Sets
We can specify the timing of the economy as follows. There are three periods: ex ante
(t = 0), interim (t = 1) and ex post (t = 2). Although consumption takes place only
at the ex post stage, the other events occur as follows:

• At t = 0, the state space, the partitions, the structure of the economy and the
price functional p : S → R`+ are common knowledge. This stage does not play
any role in our analysis and it is assumed just for a matter of clarity.

• At t = 1, each individual learns his private information signal Fi(s) and the
prevailing price p(s) ∈ R`+. Therefore, he learns Gi(s), where Gi = Fi ∨
σ(p). With this information, the individual plans how much he will consume,
xi(s). Note, however, that his actual consumption (as his endowment) may be
contingent to the final state of the world, not yet known by the individual. The
agent only knows that one of the states s′ ∈ Gi(s) obtains, but not exactly which.
Therefore, he needs to make sure that he will be able to pay his consumption plan
xi(s

′) for all s′ ∈ Gi(s), that is, p(s′) · xi(s′) ≤ p(s′) · ei(s′) for all s′ ∈ Gi(s).

• At t = 2, individual i receives and consumes his entitlement xi(s).

The interpretation of this model is that the plan that the individual makes at the
interim stage (t = 1) serves as the channel through which his information is passed
to the system, or to the “Walrasian auctioneer,” if one prefers. This is necessary for
the purpose of aggregation of information among the individuals and to guarantee the
feasibility of the final allocations.

Note that the above discussion leads to the following budget set:

Bi(s, p) = {yi ∈ Li : p(s′) · yi(s′) ≤ p(s′) · ei(s′) for all s′ ∈ Gi(s)} . (10)

An important departure of the above model from Radner (1979) is that the private
information measurability condition needs not to be imposed. We discuss this issue in
greater detail in the sequel.

2.5 Private Information Measurability
A particular case of the above specification is the model in which endowments are pri-
vate information measurable (the individual knows his endowment), as in (Allen, 1981,
p. 1179). Our model certainly allows this case, but our main result does not require
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it. Therefore, we refrain from imposing this condition in our general framework. This
allows us to cover situations in which is more natural to assume that individuals do
not know their endowments. For instance, in labor markets, workers may fail to be
completely informed of their abilities. Another example: someone has stored corn in a
barn, but does not know how much of it survived the appetite of the barn’s rats.

Note also that the consumption plan xi(·) does not need to be private informa-
tion measurable, as it is usually assumed in these models (see Radner (1979), Radner
(1982)). We have already discussed this in the context of financial markets (see the end
of Section 1.1), but it is also reasonable in many other situations. For example, assume
that you visit a restaurant in an exotic country for the first time. Although you know
how much you have in cash and the price that you will have to pay for your meal, you
will not know exactly what you will eat (or its quality) until the meal is actually served
to you. Yet another example: you may know what you contracted and how much is the
premium for your insurance, but do not know how good their services will be in the
event that you file a claim.

In Radner (1979) and Allen (1981) all market participants have preferences rep-
resented by the interim expected utility function given by (6), where for any i ∈ I ,
Πi = Gi = Fi ∨ σ(p), since according to the notion of rational expectations equi-
librium, agents make their consumption decision taking into account not only their
private information, but also the information generated by the equilibrium price. Thus,
if s is the realized state of nature, each agent i receives the information signal Gi(s),
the unique element of the partition Gi containing s. With this information, agent trades.
In the second period, once consumption takes place, the state of nature is only incom-
pletely and differently observed by agents. Indeed, if s occurs, each individual i does
not know which state belonging in the event Gi(s) has occurred. Hence, i asks to con-
sume the same bundle in those states he is not able to distinguish, which means that
allocations are required to be Gi-measurable. Therefore, the consumption set of each
individual i is LREEi given by (5).

This measurability requirement on allocations is not needed in differential infor-
mation economies in which all market participants have preferences represented by the
maximin utility function given by (9), where for any i ∈ I , Πi = Gi = Fi ∨ σ(p).
In what follows we explain why. Again, in the second period, the state of nature
is only incompletely and differently observed by agents, with the usual interpreta-
tion: if s occurs, each individual i does not know which state belonging in the event
Gi(s) has occurred. Suppose, for example, that S = {a, b, c} and for some i ∈ I ,
Gi = {{a, b}, {c}} and xi : S → R`+ is an allocation for i. If a is the realized state of
nature, agent i receives the informational signal {a, b}, meaning that he is not able to
understand which states between a and b is realized. Since, according to the maximin
expected utility, i ∈ I considers the worst possible scenario, he expects to receive the
bundle xi(s) such that ui(s, xi(s)) = min{ui(a, xi(a));ui(b, xi(b))}. Therefore, he
is indifferent between xi(a) and xi(b) because, whatever he will receive ex-post, he is
sure to obtain something ensuring him the lowest possible bound of happiness. More-
over, if we impose allocations to be private information measurable, in the event {a, b}
agent i is obligated to ask the same bundle in states a and bmeaning that xi(a) = xi(b).
But since he always considers the worst possible scenario, nothing really changes be-
cause from the maximin point of view the private information measurability makes
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just a meaningless restriction. For this reason, at the time of contracting, agent i
asks to consume ex-post one bundle between xi(a) and xi(b), and not necessarily the
same bundle in states a and b. In other words, for this reason in economies in which
agents’ preferences are represented by (9), allocations need not be private information
measurable. Clearly, this does not hold in economies in which agents’ preferences are
represented by (6) and hence allocations are required to be private information mea-
surable. A similar assumption is made in Correia-da Silva and Hervés-Beloso (2009),
who allow agents to choose a plan of lists of bundles and to consume one of the bundles
in the list, where agents’ lists are merely non empty finite subsets of R`+.

3 Maximin REE vs the Bayesian REE
This section defines the standard Bayesian rational expectations equilibrium (REE),
followed by the maximin REE (MREE). We compare the two notions in Section 3.3
and establish further properties of the MREE in Section 3.4.

3.1 Bayesian rational expectations equilibrium (REE)
In this section, we consider a differential information economy in which all market par-
ticipants have preferences represented by the Bayesian interim expected utility function
given by (6).

According to the notion of rational expectations equilibrium, agents make their
consumption decision taking into account not only their private information, but also
the information generated by the equilibrium price. Thus, agents’ preferences are rep-
resented by (6) where for any i ∈ I , Πi = Gi = Fi ∨ σ(p).

The notion below is due to Radner (1979) and Allen (1981) (see also Einy, Moreno,
and Shitovitz (2000)).

Definition 3.1 A price p and a feasible allocation x are said to be a Bayesian rational
expectations equilibrium (REE) for the economy E if

(i) for all i ∈ I , the allocation xi(·) is Gi-measurable;

(ii) for all i ∈ I and for all s ∈ S, p(s) · xi(s) ≤ p(s) · ei(s);

(iii) for all i ∈ I and for all s ∈ S,

vi(xi|Gi)(s) = max
yi∈Bi(s,p)∩LREE

i

vi(yi|Gi)(s),

where Bi(s, p) was defined by (10) and LREEi was defined by (5).

Note that the maximization is done over a budget set that is more restricted than
Bi(s, p), because we require that the acts are Gi-measurable. This definition does not
seem to be exactly the one given by Radner (1968), who requires that the sum of prices
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are not exceeded, that is16

B∗i (s, p) =

yi ∈ Li :
∑

s′∈Gi(s)

p(s′) · yi(s′) ≤
∑

s′∈Gi(s)

p(s′) · ei(s′)

 . (11)

This difference is only superficial, because the above definition is equivalent to
Radner (1968)’s, as the following lemma establishes.

Lemma 3.1 Let assumption 2.1 hold. Given i ∈ I and s ∈ S, the following conditions
are equivalent:

(i) yi ∈ Bi(s, p) ∩ LREEi ;

(ii) yi ∈ B∗i (s, p) ∩ LREEi ;

(iii) yi is Gi-measurable and p(s) · yi(s) ≤ p(s) · ei(s).

Proof: See Appendix.

The Bayesian REE is an interim concept since agents maximize conditional ex-
pected utility based on their own private information and also on the information that
equilibrium prices have generated. The resulting allocation clears the market for every
state of nature.

It is by now well known that a Bayesian rational expectations equilibrium (REE),
as introduced in Allen (1981), may not exist. It only exists in a generic sense and not
universally. Moreover, it fails to be fully Pareto optimal and incentive compatible and
it is not implementable as a perfect Bayesian equilibrium of an extensive form game
Glycopantis, Muir, and Yannelis (2005). This is not the case for the MREE as we will
see in the sequel.

3.2 Maximin REE
In this section, we consider a differential information economy in which all market
participants have preferences represented by the maximin utility function given by (9),
where for any i ∈ I , Πi = Gi = Fi ∨ σ(p). Again, in the second period, the state of
nature is only incompletely and differently observed by agents, with the usual interpre-
tation: if s occurs, each individual i does not know which state belonging in the event
Gi(s) has occurred. According to the maximin expected utility, any individual i ∈ I
considers the worst possible scenario, that is the lowest possible bound of happiness.
Thus, he does not ask to consume the same bundle in those states he is not able to
distinguish, but to consume the bundle in the event Gi(s) that maximizes his lowest
bound of happiness (i.e., his maximin expected utility). Formally, if s ∈ S is realized,

16 Actually in Radner (1968) the budget set condition of agent i is given by∑
s′∈S

p(s′) · yi(s′) ≤
∑
s′∈S

p(s′) · ei(s′),

which can be viewd as a particular case of (11) once Gi(s) = S for any s ∈ S.
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each agent i ∈ I maximizes uREEi (s, xi) subject17 to p(s′) · xi(s′) ≤ p(s′) · ei(s′) for
all s′ ∈ Gi(s) (which implies that

∑
s′∈Gi(s) p(s

′) · xi(s′) ≤
∑
s′∈Gi(s) p(s

′) · ei(s′)).
We are now able to define the notion of a maximin rational expectations equilibrium
(MREE).

Definition 3.2 A price p and a feasible allocation x are said to be a maximin rational
expectations equilibrium (MREE) for the economy E if:

(i) for all i ∈ I and for all s ∈ S, p(s) · xi(s) ≤ p(s) · ei(s);

(ii) for all i ∈ I and for all s ∈ S, uREEi (s, xi) = maxyi∈Bi(s,p) u
REE
i (s, yi).

Condition (ii) indicates that each individual maximizes his maximin utility con-
ditioned on his private information and the information the equilibrium prices have
generated, subject to the budget constraint.

Either a Bayesian REE or a MREE are said to be (i) fully revealing if the equilib-
rium price reveals to each agent all states of nature, i.e., σ(p) = F ; (ii) non revealing
if the equilibrium price reveals nothing, that is Gi = Fi for all i ∈ I or, equivalently, if
σ(p) ⊆

∧
i∈I Fi; finally (iii) partially revealing if the equilibrium price reveals some

but not all states of nature, i.e.,
∧
i∈I Fi ⊂ σ(p) ⊂ F .

Provided that σ(ui, ei) ⊆ Fi for all i ∈ I , if (x, p) is a maximin REE, then for all i ∈ I
and all s ∈ S, xi ∈ B∗i (s, p) and uREEi (s, xi) = maxyi∈B∗i (s,p) u

REE
i (s, yi), where

B∗i (s, p) is defined as in (11). The converse is also true if in addition ui(s, ·) is strictly
quasi-concave. Such an equivalence holds true even if the equilibrium price p is fully
revevaling because Bi(p, s) = B∗i (p, s) for any i ∈ I and s ∈ S.

3.3 Relationship between the Bayesian REE and the maximin REE
We denote by REE(E) and MREE(E) respectively the set of Bayesian rational ex-
pectations equilibrium allocations and the set of maximin rational expectations equi-
librium allocations of the economy E .

We first notice that whenever the equilibrium price p is fully revealing, i.e., σ(p) =
F , since Gi = Fi ∨ σ(p), it follows that Gi = F for each agent i ∈ I . Thus, for each
state s ∈ S and each agent i ∈ I , Gi(s) = {s}, and hence vi(xi|Gi)(s) = ui(s, xi(s))
as well as uREEi (s, xi) = ui(s, xi(s)). Moreover, the Gi-measurability assumption
on Bayesian REE allocations plays no role, i.e., L = LREE . Therefore, fully reveal-
ing Bayesian REE and fully revealing maximin REE coincide, i.e., REEFR(E) =
MREEFR(E)18. Such an equivalence is not true in general as shown below in Kreps’
example (see Kreps (1977)). More is true: if (x, p) is a fully revealing maximin REE,

17Notice that if Assumption 2.1 holds, since p(·) is Gi-measurable for any i ∈ I , it follows that for all
s ∈ S and any allocation xi ∈ Li

p(s′)·xi(s′) ≤ p(s′)·ei(s′) for all s′ ∈ Gi(s) ⇔ max
s′∈Gi(s)

p(s′)·xi(s′) ≤ max
s′∈Gi(s)

p(s′)·ei(s′).

This means that any agent pays the highest value to achieve the lowest possible bound of his satisfaction.
18The subscript “FR" means that we are considering only fully revealing equilibria. Thus, REEFR(E)

and MREEFR(E) are respectively the set of fully revealing Bayesian REE and fully revealing maximin
REE of the economy E . In the fully revealing case, Bi(s, p) = B∗i (s, p) for any i, p and s.
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then (x, p) is an ex-post Walrasian equilibrium (see Section 4). Therefore, fully re-
vealing Bayesian REE and fully revealing maximin REE coincide and they are both
ex-post Walrasian equilibria. The converse is not true as shown in the Kreps’s example
below where an ex-post Walrasian equilibrium exists and coincides with the unique
non-revealing maximin REE, but the set of fully revealing maximin REE, as well as of
Bayesian REE, is empty. However, the set of non-revealing MREE is non empty. This
is consistent with Lemma 8.1 in the Appendix.

Consider an economy with two states, two agents and two goods. Endowments are
identical and positive. Preferences are state-dependent and such that in state one (two),
the agent type one (two) prefers good one relatively more. In a differential information
economy in which the preferences of all agents are represented by Bayesian expected
utility function (see (6)), since the setup is symmetric, the full information equilibrium
price is the same in both states.

Now suppose that agent one can distinguish the states but agent two cannot. There
cannot be a fully revealing Bayesian REE: it would have to coincide with the full
information equilibrium, and that equilibrium has a constant price across states, which
is not compatible with revelation. Also, there cannot be a non revealing equilibrium. In
a non revealing equilibrium with equal prices across states, demand of the uninformed
agent would have to be the same across states. But demand of the informed agent
would be different across states, and therefore there will not be market clearing. Note
that a key reason for the nonexistence of a non revealing equilibrium is that the demand
of the uninformed agent is measurable with respect to his private information.

On the other hand, if we impose maximin evaluation of plans, then we can have
a non revealing equilibrium. In such an equilibrium, the uninformed agent two puts
probability one on the worse of the two states, and zero on the better one. Thus he is in-
different between any two consumption bundles in the better state - his optimal demand
is a correspondence. Therefore, we can select an element from the correspondence to
clear the market. Note that the allocation is then typically not measurable with respect
to the uninformed agent’s information and this overcomes the non-existence problem.

Below, we explicitly consider again Kreps’ example and show that while the Bayesian
REE does not exist, a maximin rational expectations equilibrium does exist. From this
we can conclude that the sets of MREE and REE may not coincide. This form of the
example can be found in (Mas-Colell, Whinston, and Green, 1995, p. 722, Example
19.H.3).

Example 3.3 (Kreps19) There are two agents, two commodities and two equally prob-
able states of nature S = {s1, s2}. The primitives of the economy are:

e1 =

((
3

2
,

3

2

)
,

(
3

2
,

3

2

))
F1 = {{s1}, {s2}};

e2 =

((
3

2
,

3

2

)
,

(
3

2
,

3

2

))
F2 = {{s1, s2}}.

19We are grateful to T. Liu and L. Sun for having checked the computations in Example 3.3.
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The utility functions of agents 1 and 2 in states s1 and s2 are given as follows

u1(s1, x1, y1) = log x1 + y1 u1(s2, x1, y1) = 2 log x1 + y1

u2(s1, x2, y2) = 2 log x2 + y2 u2(s2, x2, y2) = log x2 + y2.

It is well known that for the above economy, a Bayesian rational expectations equi-
librium does not exist (see Kreps (1977)). However we will show below that a maximin
rational expectations equilibrium does exist.

The information generated by the equilibrium price can be either {{s1}, {s2}} or
{{s1, s2}}. In the first case, the MREE coincides with the Bayesian REE, therefore it
does not exist. Thus, let us consider the case σ(p) = {∅, S}, i.e., p1(s1) = p1(s2) = p
and p2(s1) = p2(s2) = q.

Since for each s, G1(s) = {s}, agent one solves the following constraint maxi-
mization problems:

Agent 1 in state s1:

max
x1(s1),y1(s1)

log x1(s1) + y1(s1) subject to

px1(s1) + qy1(s1) ≤ 3

2
(p+ q).

Thus,

x1(s1) =
q

p
y1(s1) =

3

2

p

q
+

1

2
.

Agent 1 in state s2:

max
x1(s2),y1(s2)

2 log x1(s2) + y1(s2) subject to

px1(s2) + qy1(s2) ≤ 3

2
(p+ q).

Thus,

x1(s2) =
2q

p
y1(s2) =

3

2

p

q
− 1

2
.

Agent 2 in the event {s1, s2} maximizes

min{2logx2(s1) + y2(s1); logx2(s2) + y2(s2)}.

Therefore, we can distinguish three cases:
I Case: 2logx2(s1) + y2(s1) > logx2(s2) + y2(s2). In this case, agent 2 solves

the following constraint maximization problem:
max logx2(s2) + y2(s2) subject to px2(s1) + qy2(s1) ≤ 3

2 (p+ q) and px2(s2) +
qy2(s2) ≤ 3

2 (p+ q). Thus,

x2(s2) =
q

p
y2(s2) =

3

2

p

q
+

1

2
.

From feasibility it follows that p = q, and

(x1(s1), y1(s1)) = (1, 2) (x1(s2), y1(s2)) = (2, 1)
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(x2(s1), y2(s1)) = (2, 1) (x2(s2), y2(s2)) = (1, 2).

Notice that 2logx2(s1) + y2(s1) = 2log2 + 1 > log1 + 2 = logx2(s2) + y2(s2).

II Case: 2logx2(s1) + y2(s1) < logx2(s2) + y2(s2). In this case, agent 2 solves
the following constraint maximization problem:

max 2logx2(s1)+y2(s1) subject to px2(s1)+qy2(s1) ≤ 3
2 (p+q) and px2(s2)+

qy2(s2) ≤ 3
2 (p+ q) Thus,

x2(s1) =
2q

p
y2(s1) =

3

2

p

q
− 1

2
.

From feasibility it follows that p = q, and

(x1(s1), y1(s1)) = (1, 2) (x1(s2), y1(s2)) = (2, 1)

(x2(s1), y2(s1)) = (2, 1) (x2(s2), y2(s2)) = (1, 2).

Clearly, as noticed above, 2log2 + 1 > log1 + 2. Therefore, in the second case
there is no maximin rational expectations equilibrium.

III Case: 2logx2(s1) + y2(s1) = logx2(s2) + y2(s2). In this case, agent 2 solves
one of the following two constraint maximization problems:

max logx2(s2)+y2(s2) or max 2logx2(s1)+y2(s1) subject to px2(s1)+qy2(s1) ≤
3
2 (p+ q) and px2(s2) + qy2(s2) ≤ 3

2 (p+ q). In both cases, from feasibility it follows
that p = q, and

(x1(s1), y1(s1)) = (1, 2) (x1(s2), y1(s2)) = (2, 1)

(x2(s1), y2(s1)) = (2, 1) (x2(s2), y2(s2)) = (1, 2).

Hence, since 2logx2(s1) + y2(s1) = 2log2 + 1 > log1 + 2 = logx2(s2) + y2(s2),
there is no maximin rational expectations equilibrium in the third case.

Therefore, we can conclude that the unique maximin REE allocation is given by

(x1(s1), y1(s1)) = (1, 2) (x1(s2), y1(s2)) = (2, 1)

(x2(s1), y2(s1)) = (2, 1) (x2(s2), y2(s2)) = (1, 2).

Observe that the maximin REE bundles are not Fi-measurable. We will show in
Section 4 that the non-existence problem of the REE is deeply linked with the Gi-
measurability of allocations.

Remark 3.2 It should be noted that in the above example, whenever agents maximize
a Bayesian (subjective) expected utility as Kreps showed, the Bayesian REE either re-
vealing or non revealing does not exist. However, allowing agents to maximize a non
expected utility (i.e., the maximin utility), and choose a non measurable allocations,
we showed that a maximin rational expectations equilibrium exists. For this result, the
assumption that a MREE allocation may not be private information measurable is cru-
cial. Indeed, in the above example, the unique MREE allocation is not Gi-measurable.
This outcome is also incentive compatible and efficient (see Sections 5 and 6).
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Remark 3.3 As we have already observed, the maximin rational expectations equi-
librium allocations may not be Gi-measurable. However, if we assume strict quasi-
concavity and Fi-measurability of the random utility function of each agent, then the
resulting maximin REE allocations will be Gi-measurable, as the following proposition
indicates.

Proposition 3.4 Assume that for all i and for all s ∈ S, σ(ui, ei) ⊆ Fi and ui(s, ·) is
strictly quasi concave. If (p, x) be a maximin REE, then xi(·) is Gi-measurable for all
i ∈ I , where Gi = Fi ∨ σ(p).

Proof: See Appendix.

A similar proposition can be proved for the Bayesian rational expectations equi-
librium, that is whenever the utility functions are private information measurable and
strictly quasi concave, from the uniqueness of the maximizer, we obtain that the equi-
librium allocations must be private information measurable. In other words, if the
utility functions are private information measurable and strictly quasi-concave, condi-
tion (i) in Definition 3.1 is automatically satisfied. Moreover, the same holds true if in
Definition 3.2 the budget set is defined by (11) as well as with the general MEU for-
mulation (8) provided that for any agent i and state s the setMs

i contains only positive
priors (i.e., µ(s′) > 0 for any s′ ∈ Πi(s) and

∑
s′∈Πi(s)

µ(s′) = 1). See section 8.5 in
the appendix for more details.

It was shown in Example 3.3 that the maximin and the Bayesian REE are not com-
parable. We have already observed that in the special case of fully revealing equilib-
rium prices, both concepts coincide. We show below that the same holds whenever
σ(ui, ei) ⊆ Fi for all i ∈ I . Note that in Example 3.3, utility functions are not Fi-
measurable and therefore Example 3.3 does not fulfill the assumptions of Proposition
3.5 below.

Proposition 3.5 Assume that σ(ui, ei) ⊆ Fi for all i ∈ I . If (p, x) is a Bayesian REE,
then (p, x) is a MREE. The converse is also true if xi(·) is Gi-measurable for all i ∈ I .

Proof: See Appendix.

Remark 3.4 The above proposition holds with the general MEU formulation (8) and
it remains true if we replace the Gi-measurability of the allocations by the strict quasi
concavity of the random utility functions. This follows by combining Propositions 3.4
and 3.5.

3.4 Properties of a maximin rational expectations equilibrium
In this section we investigate some basic properties of a maximin rational expectations
equilibrium.
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The first property of a MREE regards the equilibrium price p. We show that under
certain assumptions the equilibrium price is strictly positive in each state of nature, i.e.,
p(s)� 0 for all s ∈ S.

Remark 3.5 Recall that in a complete information economy, if the utility function of
at least one agent is strictly monotone, the equilibrium price is strictly positive. We
prove the same for the MREE prices. Notice that, typically in differential information
economies an additional assumption is needed: for each state s ∈ S, there exists an
agent i ∈ I such that {s} ∈ Fi. It implies that

∨
i∈I Fi = F = 2S which is used

in Allen (1981) and Einy, Moreno, and Shitovitz (2000). The converse is not true:
in particular in a differential information economy with three states of nature S =
{a, b, c} and two agents I = {1, 2}, with F1 = {{a, b}, {c}} and F2 = {{a, c}, {b}},
it is true thatF1∨F2 = {{a}, {b}, {c}}, but {a} /∈ Fi for any i ∈ {1, 2}. Although this
assumption is quite common in the literature (see for example Angeloni and Martins-
da Rocha (2009) and Correia-da Silva and Hervés-Beloso (2012)), we can prove that
MREE prices are strictly positive by dispensing with it.

Proposition 3.6 Assume that there is at least one agent i ∈ I such that ui(s, ·) is
strictly monotone for any s ∈ S. If (p, x) is a maximin rational expectations equilib-
rium, then p(s)� 0 for any s ∈ S.

Proof: See Appendix.

The above results holds true even with the general MEU formulation (8). We now
show a second property of a MREE: if the utility functions are private information
measurable, then for each agent i ∈ I , the maximin utility at any MREE allocation is
constant in each event of the partition Gi.

Proposition 3.7 Assume that σ(ui, ei) ⊆ Fi for all i ∈ I . If (p, x) is a maximin
rational expectations equilibrium, then for all i and s, uREEi (s, xi) = ui(s

′, xi(s
′))

for all s′ ∈ Gi(s), that is the minimum in the event Gi(s) is obtained in each state s′ of
the event.

Proof: See Appendix.

Notice that if (p, x) is a fully revealing Maximin REE, Proposition 3.7 is trivially
satisfied even if the utility functions and the initial endowments are not private infor-
mation measurable. Moreover Proposition 3.7 holds true even with the general MEU
formulation (8) provided that for any agent i and state s, the set Ms

i contains only
positive priors. See section 8.5 in the appendix for more details.

4 Existence of a maximin rational expectations equilib-
rium

In this section, we prove the existence of a maximin rational expectations equilibrium.
It should be noted that under the assumptions, which guarantee that a maximin rational
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expectations equilibrium exists, the Bayesian REE need not exist. In studies of rational
expectations equilibria, it is common to appeal to an artificial family of complete infor-
mation economies (see e.g., Radner (1979); Allen (1981); Einy, Moreno, and Shitovitz
(2000), De Simone and Tarantino (2010)). Given a differential information economy E
described in Section 2, since S is finite, there is a finite number of complete informa-
tion economies {E(s)}s∈S . For each fixed s in S, the complete information economy
E(s) is given as follows:

E(s) =
{
I,R`+, (ui(s), ei(s))i∈I

}
,

where I = {1, . . . , n} is still the set of n agents, and for each i ∈ I , ui(s) = ui(s, ·) :
R`+ → R and ei(s) ∈ R`+ represent respectively the utility function and the initial
endowment of agent i. Let W (E(s)) be the set of Walrasian equilibrium allocations of
E(s).

We prove that the set of maximin REE allocations contains all the selections from
the Walrasian equilibrium correspondence of the associated family of complete infor-
mation economies. From the existence of a Walrasian equilibrium in each complete in-
formation economy E(s), we deduce the existence of a maximin REE. A related result
has been shown by Einy, Moreno, and Shitovitz (2000) and De Simone and Tarantino
(2010) but under the additional private information measurability assumption on the
utility functions and the initial endowments (see also Theorem 4.3).

Theorem 4.1 (Existence) If for any i ∈ I and s ∈ S the function ui(s, ·) is quasi-
concave and ei(s)� 0, then there exists a maximin rational expectations equilibrium
in E , i.e., MREE(E) 6= ∅.

Proof: See Appendix.

Remark 4.1 The sum of quasi-concave functions is not quasi-concave and thus in the
Bayesian model one has to assume concavity. However the maximin utility is quasi-
concave if the ex post utility is quasi-concave. Thus, the MEU allows us to use the
more general assumption of quasi-concavity instead of concavity. In order to prove
the existence of a maximin rational expectations equilibrium, we show that it contains
the nonempty set of ex post Walrasian equilibria (see Lemma 8.1 in the Appendix). In
the example below, we show that such an inclusion is strict, that is, there may exist
a maximin rational expectations equilibrium which is not a Walrasian equilibrium in
some complete information economy E(s).

Example 4.2 Consider a differential information economy with three states of nature,
S = {a, b, c}, two goods, ` = 2 (the first good is considered as numerarie) and two
agents, I = {1, 2} whose characteristics are given as follows:

ui(a, x, y) =
√
xy ui(b, x, y) =

√
xy ui(c, x, y) = log(xy) for all i = 1, 2

e1(a) = e1(b) = (2, 1) e1(c) = (1, 2) e2(a) = e2(c) = (1, 2) e2(b) = (2, 1)
F1 = {{a, b}; {c}} F2 = {{a, c}; {b}}.
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Notice that the initial endowment is private information measurable, while the utility
functions are not. Hence this example does not contradict Lemma 8.2 in the Appendix.

The set W of ex post Walrasian equilibrium has only one element, i.e.,

(p(a), q(a)) = (1, 1) (x1(a), y1(a)) =
(

3
2 ,

3
2

)
(x2(a), y2(a)) =

(
3
2 ,

3
2

)
(p(b), q(b)) = (1, 2) (x1(b), y1(b)) = (2, 1) (x2(b), y2(b)) = (2, 1)
(p(c), q(c)) =

(
1, 1

2

)
(x1(c), y1(c)) = (1, 2) (x2(c), y2(c)) = (1, 2) .

Clearly, this equilibrium is also a fully revealing maximin rational equilibrium,
since (p(a), q(a)) 6= (p(b), q(b)) 6= (p(c), q(c)) and hence Gi = σ(p, q) = {{a}, {b}, {c}}
for any i = 1, 2. However, it is not unique. Indeed, the set MREE(E) contains the
following further element:

(p(a), q(a)) =
(
1, 1

2

)
(x1(a), y1(a)) =

(
5
4 ,

5
2

)
(x2(a), y2(a)) =

(
7
4 ,

1
2

)
(p(b), q(b)) = (1, 2) (x1(b), y1(b)) = (2, 1) (x2(b), y2(b)) = (2, 1)
(p(c), q(c)) =

(
1, 1

2

)
(x1(c), y1(c)) = (1, 2) (x2(c), y2(c)) = (1, 2) .

This is a partially revealing equilibrium, since (p(a), q(a)) = (p(c), q(c)) 6= (p(b), q(b))
and hence σ(p, q) = {{a, c}, {b}}, that is G1 = {{a}, {b}, {c}}, while G2 = F2. No-
tice that the equilibrium allocations are not Gi-measurable.

Remark 4.2 If for any i ∈ I and s ∈ S ei(s) � 0, σ(ui, ei) ⊆ Fi, and the function
ui(s, ·) is strictly quasi-concave, then from Remark 3.4 and Theorem 4.1 it follows that
there exists a Bayesian REE in E .

Remark 4.3 Notice that in Example 3.3, where the Bayesian REE does not exist, not
all the above assumptions of Remark 4.2 are satisfied. In particular, the random utility
functions are not Fi-measurable. Hence, the Kreps’s example of the nonexistence of a
Bayesian REE does not contradict Remark 4.2.

Theorem 4.3 Assume that for any i ∈ I and s ∈ S the function ui(s, ·) is strictly
quasi-concave and σ(ui, ei) ⊆ Fi. Let x be a feasible allocation. The following
statements are equivalent:

(1) x is a maximin REE20. ;

(2) x is a Bayesian REE;

(3) x is an ex-post Walrasian equilibrium allocation.

Proof: See Appendix.

Remark 4.4 Observe that the non-existence problem of a Bayesian REE is deeply
linked to the private information measurability of the allocations. Moreover, if we con-
sider a Bayesian REE (p, x) but removing from Definition 3.1 the private information

20We can consider also the general MEU formulation (8) provided that for all agent i and state s, the set
Ms

i contains only positive priors (see section 8.5.)
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measurability of allocations (i.e., condition (i)) and also consider in the optimization
problem the budget set defined as (10), then we end up with the following notion which
coincides in the Kreps’s example 3.3 with the maximin REE:

1. for all i and for all s, p(s) · xi(s) ≤ p(s) · ei(s);

2. for all i and for all s, vi(xi|Gi)(s) = maxyi∈Bi(s,p) vi(yi|Gi)(s); where

Bi(s, p) = {yi ∈ Li : p(s′) · yi(s′) ≤ p(s′) · ei(s′) for all s′ ∈ Gi(s)} .

3.
∑
i∈I xi(s) =

∑
i∈I ei(s) for all s ∈ S.

It is easy to show that the above REE notion coincides with the ex post Walrasian equi-
librium, and therefore it exists under suitable assumptions. However, the above notion
does not provide any new insights, since it is “equivalent” with the ex post Walrasian
equilibrium. Moreover, from Theorem 4.1 and Example 4.2, one can easily deduce
that any Bayesian REE allocation not private information measurable is a maximin
REE but the reverse is not true. Furthermore, we show in the next section, that when-
ever we drop the private information measurability constraint, the REE exists, but it
may not be incentive compatible (see Glycopantis, Muir, and Yannelis (2005)). This
conflict does not arise anymore with the maximin utility functions. In fact, a maximin
rational expectations equilibrium exists and it is incentive compatible.

4.1 General Case (Existence)
In this section we show that the non-existence problem of a REE is deeply linked to
the private information measurability of the allocations. To this end, assume that the
preferences of each individual i, with private information Πi in state s are represented
by Vi(·,Πi, s) (see (7)).

Definition 4.4 A price p and a feasible allocation x are said to be a V-rational expec-
tations equilibrium (V-REE) for the economy E if:

(i) for all i ∈ I and for all s ∈ S, p(s) · xi(s) ≤ p(s) · ei(s);

(ii) for all i ∈ I and for all s ∈ S, Vi(xi,Gi, s) = maxyi∈Bi(s,p) Vi(yi,Gi, s);
where for any i ∈ I , Gi = σ(p) ∨ Fi.

Theorem 4.5 If for any i ∈ I and s ∈ S the function ui(s, ·) is quasi-concave and
ei(s) � 0, then there exists a V-rational expectations equilibrium in E , i.e., V −
REE(E) 6= ∅.

Proof: See Appendix.

Remark 4.5 Notice that the utility

uΠi
i (s, xi) = min

µ∈Ms
i

Eµ[ui(·, xi(·))], (12)
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where Ms
i is a non-empty, closed and convex set of probabilities with support con-

tained on Πi(s), is a particular case of Vi(·,Πi, s). Clearly ifMs
i is a singleton then

(12) is the (Bayesian) expected utility function (6). On the other hand, if Ms
i is the

set Csi of all probabilities with support contained on Πi(s) then (12) coincides with
(9). This in particular means that a maximin REE, as well as the equilibrium defined
in Remark 4.4, is a V-REE and hence Theorem 4.1 is a mere consequence of Theo-
rem 4.5. It is worth noting that except for the fully revealing case, the Bayesian REE
is not a particular case of the V-REE since according to Definition 3.1, allocations
are required to be Gi-measurable. Moreover, according to Definition 4.4 we may also
consider the more realistic situation in which different agents have different attitude
toward ambiguity. Consequently Theorem 4.5 guarantees the existence of the equilib-
rium in economies where some agents’ preferences are represented by vi(xi|Πi)(s) =∑
s′∈Πi(s)

ui(s
′, xi(s

′)) (i.e., (6)) some by uiΠi(s, xi) = mins′∈Πi(s) ui(s
′, xi(s

′))
(i.e., (9)) and some other by the intermediate case (12).

We now observe in some cases, the set of V-REE coincides with the set of ex-post
Walrasian equilibria. Precisely, the following holds.

Proposition 4.6 If (x, p) is an ex-post Walrasian equilibrium, then (x, p) is a V-REE.
Conversely, let (x, p) be a V-REE and Gi = Fi ∨ σ(p) for all i ∈ I . Assume that for
any i ∈ I and any s ∈ S, Vi(·,Gi, s) is such that

(∗∗∗) ui(s′, xi(s′)) > ui(s
′, yi(s

′)) in some s′ ∈ Gi(s), ⇒ Vi(xi,Gi, s) > Vi(zi,Gi, s),

where zi(s′) = yi(s
′) and zi(s) = xi(s) for all s ∈ Gi(s) \ {s′}.

Then, (x, p) is an ex-post Walrasian equilibrium.

Proof: See Appendix.

Notice that condition (∗ ∗ ∗) is satisfied by the Bayesian expected utility, provided
that πi(s) > 0 for any agent i and any state s, while the maximin expected utility may
violate it. This is consistent with Remark 4.4 and Example 4.2. However, according to
Theorem 4.3, whenever agents’ initial endowment and utility are private information
measurable, the maximin REE also coincides with the ex-post Walrasian equilibria.

5 Efficiency of the maximin REE
We now define the notion of maximin and ex post Pareto optimality and we will exhibit
conditions which guarantee that any maximin REE is maximin efficient and ex post
Pareto optimal. The results illustrated in this section also holds for the general MEU
formulation.21.

21Notice that to prove the statements of Theorems 5.4 and 5.8 under the first condition (i.e., σ(ui, ei) ⊆
Fi for all i ∈ I), for any agent i and state s, the setMs

i must contain only positive priors (see section 8.5)
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Definition 5.1 A feasible allocation x is said to be ex post efficient (or ex post Pareto
optimal) if there does not exist an allocation y ∈ L such that

(i) ui(s, yi(s)) ≥ ui(s, xi(s)) for all i ∈ I and for all s ∈ S,
with at least a strict inequality.

(ii)
∑
i∈I

yi(s) =
∑
i∈I

ei(s) for all s ∈ S.

Definition 5.2 A feasible allocation x is said to be maximin efficient (or maximin
Pareto optimal) with respect to information structure22 Π, if there does not exist an
allocation y ∈ L such that

(i) uΠi
i (s, yi) ≥ uΠi

i (s, xi) for all i ∈ I and for all s ∈ S,
with at least a strict inequality.

(ii)
∑
i∈I

yi(s) =
∑
i∈I

ei(s) for all s ∈ S.

Proposition 5.3 Let Π an information structure such that

1. for any state s there exists an agent i such that Πi(s) = {s}23;

2. ui(s, ·) is strict monotone for any i ∈ I and any s ∈ S.

Then any maximin efficient allocation x with respect to the information structure Π is
ex post Pareto optimal. The converse may not be true.

Proof: See Appendix.

The assumption that for any state s there exists an agent i such that Πi(s) = {s} is
fundamental for Proposition 5.3 as shown by Example 8.1 in the Appendix.

We are now ready to exhibit the conditions under which any MREE is maximin
efficient and also ex post Pareto optimal.

Theorem 5.4 Let (p, x) be a maximin rational expectations equilibrium. If one of the
following conditions holds true:

1. σ(ui, ei) ⊆ Fi for each i ∈ I;

2. p is fully revealing, i.e., σ(p) = F;

22An information structure Π is simply a vector (Π1, . . . ,Πi, . . . ,Πn), where for each i ∈
{1, . . . , n} = I, Πi is a partition of S. If Πi = Fi for each i ∈ I , then the information structure is
the initial private information.

23This assumption is quite common in the literature of asymmetric information economies (see for exam-
ple Angeloni and Martins-da Rocha (2009) and Correia-da Silva and Hervés-Beloso (2012)) (see remark 3.5
in section 3.4)
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then x is ex-post efficient and maximin Pareto optimal with respect to the information
structure G = (Gi)i∈I , where Gi = Fi ∨ σ(p) for any i ∈ I .

Moreover, if none of the above conditions is satisfied, a maximin REE may not be
maximin efficient.

Proof: See Appendix.

Remark 5.1 The ex-post Pareto optimality does not follows from Proposition 5.3 be-
cause we do not require that the information structure Gi is such that for any state s
there exists an agent i such that Gi(s) = {s}, neither that ui(s, ·) is strict monotone for
any s ∈ I and any i ∈ I .

According to the efficiency concept (Definitions 5.1 and 5.2), an improvement re-
quires a strict utility increase for some pair (j, s̄) ∈ I × S and no utility decreases for
all (i, s) ∈ I × S. A weaker notion defined below would require strict utility increases
for all agents in all states of nature. Clearly, any maximin Pareto optimal allocation is
weak maximin efficient. The converse may not be true (see Examples 8.3 and 8.4 and
Remark 5.3).

Definition 5.5 A feasible allocation x is said to be weak maximin efficient (or weak
maximin Pareto optimal) with respect to information structure Π, if there does not exist
an allocation y ∈ L such that

(i) uΠi
i (s, yi) > uΠi

i (s, xi) for all i ∈ I and for all s ∈ S,

(ii)
∑
i∈I

yi(s) =
∑
i∈I

ei(s) for all s ∈ S.

Similarly the notion of weak ex-post efficiency is given as follows.

Definition 5.6 A feasible allocation x is said to be weak ex post efficient (or weak ex
post Pareto optimal) if there does not exist an allocation y ∈ L such that

(i) ui(s, yi(s)) > ui(s, xi(s)) for all i ∈ I and for all s ∈ S,
(ii)

∑
i∈I

yi(s) =
∑
i∈I

ei(s) for all s ∈ S.

Proposition 5.7 Any weak maximin efficient allocation x (with respect to any infor-
mation structure) is weak ex post Pareto optimal. The converse may not be true.

Proof: See Appendix.

Notice that, contrary to Proposition 5.3, we need no further assumptions on the in-
formation structure neither on agents’ utility functions.

We now list the conditions guaranteeing that a maximin REE is weak maximin
efficient and a fortiori weak ex-post Pareto optimal (see Proposition 5.7).
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Theorem 5.8 Let (p, x) be a maximin rational expectations equilibrium. If one of the
following conditions holds true:

(i) σ(ui, ei) ⊆ Fi for each i ∈ I;

(ii) p is fully revealing, i.e., σ(p) = F;

(iii) there exists a state of nature s̄ ∈ S, such that {s̄} = Gi(s̄) for all i ∈ I;

(iv) the n− 1 agents are fully informed.

then x is weak maximin Pareto optimal with respect to the information structure G =
(Gi)i∈I , where Gi = Fi ∨ σ(p) for any i ∈ I , and hence weak ex post efficient.

Moreover if none of the above conditions is satisfied, then a maximin REE may not
be weak maximin efficient (and a fortiori it may not be maximin Pareto optimal).

Proof: See Appendix.

Remark 5.2 Notice that in the first two cases (i.e., under conditions (i) or (ii)), the
result easily follows from Theorem 5.4 and from the observation that any allocation
maximin efficient with respect to Π is weak maximin Pareto optimal with respect to Π.
On the other hand, it can be shown that under condition (iii) or (iv) a maximin REE
allocation is weak maximin Pareto optimal but it may not be maximin efficient (see
Examples 8.3 and 8.4 in the Appendix).

Remark 5.3 Notice that in Kreps’s example (Example 3.3), one of the two agents is
fully informed, hence condition (iv) of Theorem 5.8 is satisfied. This guarantees that
the unique maximin rational expectations equilibrium (MREE) is weak maximin Pareto
optimal and hence weak ex post efficient. On the other hand, no condition of Theorem
5.4 is verified and the unique maximin REE is not maximin efficient. Indeed consider
the following feasible allocation

(t1(s1), z1(s1)) =

(
5

4
, 2

)
(t1(s2), z1(s2)) = (x1(s2), y1(s2)) = (2, 1)

(t2(s1), z2(s1)) =

(
7

4
, 1

)
(t2(s2), z2(s2)) = (x2(s2), y2(s2)) = (1, 2),

and notice that

uREE1 (s1, t1, z1) = log
5

4
+ 2 > 2 = uREE1 (s1, x1, y1)

uREE1 (s2, t1, z1) = 2log2 + 1 = uREE1 (s2, x1, y1)

uREE2 (s1, t2, z2) = uREE2 (s2, t2, z2) = min

{
2log

7

4
+ 1; 2

}
= 2

= min{2log2 + 1; 2} = uREE2 (s2, x2, y2) = uREE2 (s1, x2, y2).
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Thus, the unique maximin REE is weak maximin efficient but not maximin Pareto opti-
mal with respect to the information structure G = (G1,G2) neither with F = (F1,F2)
since the equilibrium is non revealing and G = F . On the other hand, the unique non
revealing maximin REE is an ex-post Walrasian equilibrium and hence it is ex-post ef-
ficient. Indeed assume on the contrary that there exists an alternative feasible allocation
(t, z) such that

(i) log(3− t2(s1)) + (3− z2(s1)) ≥ 2

(ii) 2log(t2(s1)) + z2(s1) ≥ 2log2 + 1

(iii) 2log(t1(s2)) + z1(s2) ≥ 2log2 + 1

(iv) log(3− t1(s2)) + (3− z1(s2)) ≥ 2,

with at least one strict inequality. If one of (i) and (ii) is strict, then (3−t2(s1))t22(s1) >
4 or equivalently that (t2(s1)+1)(t2(s1)−2)2 < 0 which is a contradiction. Similarly
if one of (iii) and (iv) is strict.

Therefore, Kreps’s example can also be used to show that a weak maximin effi-
cient allocation may not be maximin Pareto optimal and an ex-post efficient allocation
may not be maximin efficient. Moreover, an ex-post Walrasian equilibrium allocation,
which is always ex-post efficient, may not be maximin Pareto optimal.

5.1 Further remarks on the efficiency of maximin REE
Someone could debate the fact that we have considered the algebra Gi and notFi. What
is the correct definition? It seems to us that it depends on what kind of interpretation
or story one has in mind. For example one may say that the notions of efficiency and
incentive compatibility are independent of prices and as a consequence agents have to
condition their expectations on Fi. This view however can be challenged because at
REE each agent in the interim stage behaves like having observed the equilibrium price
and conditions herself on the information Gi = Fi ∨ σ(p). Thus the relevant informa-
tion for each agent is Gi and not Fi. For this reason we chose to present the definitions
of efficiency and incentive compatibility considering the two different private informa-
tion sets, Fi and Gi.

We now investigate the efficiency of maximin REE with respect to the initial private
information structureF = (Fi)i∈I . We do the same for the incentive compatibility (see
subsection 6.2).

Remark 5.4 Clearly, for any non revealing maximin rational expectations equilibrium
the results of Section 5 still hold simply because Gi = Fi for all i ∈ I . In particular
notice that the equilibrium in Example 8.2 is non-revealing. On the other hand, any
fully revealing maximin REE is maximin efficient with respect to Gi and also ex-post
efficient (see Theorem 5.4), but it may not be maximin efficient with respect to Fi as
the following example shows.
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Example 5.9 Consider a differential information economy with two states of nature,
S = {a, b}, two goods, ` = 2 (the first good is considered as numerarie) and three
agents, I = {1, 2, 3} whose characteristics are given as follows:

e1(a) = (2, 1) e1(b) = (1, 2) F1 = {{a}; {b}}
e2(a) = (1, 2) e2(b) = (1, 2) F2 = {{a, b}}
e3(a) = (2, 1) e3(b) = (2, 1) F3 = {{a, b}}.

ui(a, x, y) =
√
xy ui(b, x, y) = x2y for any i ∈ {1, 2} u3(a, x, y) = u3(b, x, y) = logxy.

Consider the following fully revealing maximin rational expectations equilibrium

(p(a), q(a)) =
(
1, 5

4

)
(x1(a), y1(a)) =

(
13
8 ,

13
10

)
(x2(a), y2(a)) =

(
7
4 ,

7
5

)
(x3(a), y3(a)) =

(
13
8 ,

13
10

)
(p(b), q(b)) =

(
1, 10

19

)
(x1(b), y1(b)) =

(
26
19 ,

13
10

)
(x2(b), y2(b)) =

(
26
19 ,

13
10

)
(x3(b), y3(b)) =

(
24
19 ,

12
5

)
.

The above fully revaling maximin REE is of course ex post efficient since it coincides
with an ex post Walrasian equilibrium. On the other hand, we now show that it is not
maximin efficient with respect to the initial private information structure F = (Fi)i∈I .
To this end, consider the following feasible allocation (t, z)

(ti(a), zi(a)) = (xi(a), yi(a)) for all i ∈ I,

(t1(b), z1(b)) =

(
31

19
,

7

5

)
(t2(b), z2(b)) =

(
25

19
,

6

5

)
(t3(b), z3(b)) =

(
20

19
,

12

5

)
,

and notice that,

uF1
1 (a, t1, z1) = u1(a, t1(a), z1(a)) = u1(a, x1(a), y1(a)) = uF1

1 (a, x1, y1)

uF1
1 (b, t1, z1) = u1(b, t1(b), z1(b)) =

(
31

19

)2
7

5
>

(
26

19

)2
13

10
= u1(b, x1(b), y1(b)) = uF1

1 (b, x1, y1)

uF2
2 (a, t2, z2) = uF2

2 (b, t2, z2) = min

{√
49

20
,

(
25

19

)2
6

5

}
=

√
49

20

= min

{√
49

20
,

(
26

19

)2
13

10

}
= uF2

2 (b, x2, y2) = uF2
2 (a, x2, y2)

uF3
3 (a, t3, z3) = uF3

3 (b, t3, z3) = min

{
log

169

80
, log

240

95

}
= log

169

80

= min

{
log

169

80
, log

288

95

}
= uF3

3 (b, x3, y3) = uF3
3 (a, x3, y3).

Hence, the equilibrium allocation (x, y) is not maximin Pareto optimal with respect
to the information structure F = (Fi)i∈I .
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We now list the conditions under which a maximin REE fully revealing or not is
maximin efficient with respect to the initial private information structure (Fi)i∈I .

Theorem 5.10 Let (p, x) be a maximin rational expectations equilibrium. If one of the
following conditions holds true:

(a) there exists a state of nature s̄ ∈ S, such that {s̄} = Fi(s̄) for all i ∈ I;

(b) the n− 1 agents are fully informed.

then x is weak maximin Pareto optimal with respect to F = (Fi)i∈I and with respect
to G = (Gi)i∈I .

Moreover if none of the above conditions is satisfied, then a maximin REE may not
be weak maximin efficient with respect to the information structure F = (Fi)i∈I and
a fortiori maximin Pareto optimal.

6 Incentive compatibility of rational expectations equi-
librium

We now recall the notion of coalitional incentive compatibility in Krasa and Yannelis
(1994).

Definition 6.1 An allocation x is said to be coalitional incentive compatible (CIC)
with respect to the information structure Π = (Πi)i∈I if the following does not hold:
there exists a coalition C and two states a and b such that

(i) Πi(a) = Πi(b) for all i /∈ C,
(ii) ei(a) + xi(b)− ei(b) ∈ R`+ for all i ∈ C, and
(iii) ui(a, ei(a) + xi(b)− ei(b)) > ui(a, xi(a)) for all i ∈ C.

In order to explain what incentive compatibility means in an asymmetric informa-
tion economy, let us consider the following two examples24.

Example 6.2 Consider an economy with two agents, three equally probable states of
nature, denoted by a, b and c, and one good per state denoted by x. The primitives of
the economy are given as follows:

u1(·, x1) =
√
x1; e1(a, b, c) = (20, 20, 0); F1 = {{a, b}; {c}}.

u2(·, x2) =
√
x2; e2(a, b, c) = (20, 0, 20); F2 = {{a, c}; {b}}.

Consider the following risk sharing (Pareto optimal) redistribution of initial endow-
ment:

x1(a, b, c) = (20, 10, 10)

x2(a, b, c) = (20, 10, 10).

24The reader is also referred to Krasa and Yannelis (1994), Koutsougeras and Yannelis (1993) and Pod-
czeck and Yannelis (2008) for an extensive discussion of the Bayesian incentive compatibility in asymmetric
information economies.
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Notice that the above allocation is not incentive compatible with respect to the
initial private information structure F = (F1,F2). Indeed, suppose that the real-
ized state of nature is a, agent 1 is in the event {a, b} and he reports c, (observe
that agent 2 cannot distinguish between a and c). If the realized state is b, then
agent 2 knows that 1 lied, but we ignore the possible effects of this.25 If the real-
ized state is a, then 2 is not able to identify the lie and then gives to agent 1 ten
units. Therefore, the utility of agent 1, when he misreports and the state is a is
u1(a, e1(a) + x1(c) − e1(c)) = u1(a, 20 + 10 − 0) =

√
30 which is greater than

u1(a, x1(a)) =
√

20, the utility of agent 1 when he does not misreport. Hence, the
allocation x1(a, b, c) = (20, 10, 10) and x2(a, b, c) = (20, 10, 10) is not incentive
compatible.

In order to make sure that the equilibrium contracts are stable, we must insist on
a coalitional definition of incentive compatibility and not an individual one. As the
following example shows, a contract which is individual incentive compatible may not
be coalitional incentive compatible and therefore may not be viable.

Example 6.3 Consider an economy with three agents, two goods and three states of
nature S = {a, b, c}. The primitives of the economy are given as follows: for all
i = 1, 2, 3, ui(·, xi, yi) =

√
xiyi and

F1 = {{a, b, c}}; e1(a, b, c) = ((15, 0); (15, 0); (15, 0)).
F2 = {{a, b}, {c}}; e2(a, b, c) = ((0, 15); (0, 15); (0, 15)).
F3 = {{a}, {b}, {c}}; e3(a, b, c) = ((15, 0); (15, 0); (15, 0)).

Consider the following redistribution of the initial endowments:

x1(a, b, c) = ((8, 5), (8, 5), (8, 13))

x2(a, b, c) = ((7, 4), (7, 4), (12, 1)) (13)
x3(a, b, c) = ((15, 6), (15, 6), (10, 1)).

Notice that the only agent who can misreport either state a or b to agents 1 and
2 is agent 3. Clearly, agent 3 cannot misreport state c since agent 2 would know it.
Thus, agent 3 can only lie if either state a or state b occurs. However, agent 3 has
no incentive to misreport since he gets the same consumption in both states a and
b. Hence, the allocation (13) is individual incentive compatible with respect to the
initial private information structure F = (F1,F2,F3), but we will show that it is not
coalitional incentive compatible with respect to F . Indeed, if c is the realized state
of nature, agents 2 and 3 have an incentive to cooperate against agent 1 and report b
(notice that agent 1 cannot distinguish between b and c). The coalition C = {2, 3} will

25 We ignore the implication of being caught lying, thus allowing more lies to happen. This means that
we are using a stronger incentive compatibility notion.
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now be better off, i.e.,

u2(c, e2(c) + x2(b)− e2(b)) = u2(c, (0, 15) + (7, 4)− (0, 15))

= u2(c, (7, 4)) =
√

28 >
√

12 = u2(c,x2(c))

u3(c, e3(c) + x3(b)− e3(b)) = u3(c, (15, 0) + (15, 6)− (15, 0))

= u3(c, (15, 6)) =
√

90 >
√

10 = u3(c,x3(c)).

In Example 6.2 we have constructed an allocation which is Pareto optimal but it
is not individual incentive compatible; while in Example 6.3 we have shown that an
allocation, which is individual incentive compatible, need not be coalitional incentive
compatible.

In view of Examples 6.2 and 6.3, it is easy to understand the meaning of Definition
6.1. An allocation is coalitional incentive compatible if no coalition of agents C can
cheat the complementary coalition (i.e., I \ C) by misreporting the realized state of
nature and make all its members better off. Notice that condition (i) indicates that
coalition C can only cheat the agents not in C (i.e., I \ C) in the states that the agents
in I \ C cannot distinguish. If C = {i} then the above definition reduces to individual
incentive compatibility.

6.1 Maximin Incentive Compatibility
In this section, we will prove that the maximin rational expectations equilibrium is
incentive compatible. To this end we need the following definition of maximin coali-
tional incentive compatibility, which is an extension of the Krasa and Yannelis (1994)
definition to incorporate maximin preferences (see also de Castro and Yannelis (2011)).

Definition 6.4 A feasible allocation x is said to be maximin coalitional incentive com-
patible (MCIC) with respect to information structure Π = (Π)i∈I , if the following does
not hold: there exists a coalition C and two states a and b such that

(i) Πi(a) = Πi(b) for all i /∈ C,
(ii) ei(a) + xi(b)− ei(b) ∈ R`+ for all i ∈ C, and
(iii) uΠi

i (a, yi) > uΠi
i (a, xi) for all i ∈ C,

where for all i ∈ C,

(∗) yi(s) =

{
ei(a) + xi(b)− ei(b) if s = a
xi(s) otherwise.

According to the above definition, an allocation is said to be maximin coalitional
incentive compatible if it is not possible for a coalition to misreport the realized state
of nature and have a distinct possibility of making its members better off in terms of
maximin utility.
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Remark 6.1 Example 6.2 shows that an efficient allocation may not be incentive com-
patible in the Krasa-Yannelis sense. We now show that it is not the case in our maximin
sense26. Precisely, if agents take into account the worse possible state that can occur,
then the allocation xi(a, b, c) = (20, 10, 10) for i = 1, 2 in Example 6.2, is maximin
incentive compatible. Indeed, if a is the realized state of nature, agent 1 does not have
an incentive to report state c and benefit, because when he misreports he gets:

u1(a, y1) = min{u1(a, e1(a)+x1(c)−e1(c));u1(b, x1(b))} = min{
√

30,
√

10} =
√

10.

When agent 1 does not misreport, he gets:

u1(a, x1) = min{u1(a, x1(a));u1(b, x1(b))} = min{
√

20,
√

10} =
√

10.

Consequently, agent 1 does not gain by misreporting. Similarly, one can easily check
that agent 2, when a is the realized state of nature, does not have an incentive to report
state b and benefit. Indeed, if the realized state of nature is a, agent 2 is in the event
{a, c}. If agent 2 reports the false event {b} then his maximin utility does not increase
since

u2(a, y1) = min{u2(a, e2(a) + x2(b)− e2(b));u2(c, x2(c))}
= min{

√
20 + 10− 0,

√
10} =

√
10

= min{
√

20,
√

10} = u2(a, x2).

Proposition 6.5 If x is CIC with respect to the information structure Π = (Πi)i∈I ,
then it is also maximin CIC with respect to Π. The converse may not be true.

Proof: See Appendix.

Theorem 6.6 Any maximin rational expectations equilibrium (x, p) is maximin coali-
tional incentive compatible with respect to the information structure G = (Gi)i∈I ,
where Gi = Fi ∨ σ(p) for any i ∈ I .

Proof: See Appendix.

6.2 Further remarks on the incentive compatibility of maximin
REE

In this section we consider the incentive compatibility with respect to the initial private
information F = (Fi)i∈I since the same considerations made in subsection 5.1 ap-
ply. In what follows, by the term “(private) incentive compatible", we mean incentive
compatibility with respect to the initial private information structure F = (Fi)i∈I .

26De Castro and Yannelis show that every efficient allocation is coalitional incentive compatible if and
only if all individuals have maximin preferences (see Theorem 3.1 in de Castro and Yannelis (2011)).
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Remark 6.2 Clearly, any non revealing maximin rational expectations equilibrium is
(private) maximin CIC, simply because Gi = Fi for all i ∈ I , and hence the result
follows from Theorem 6.6. Example 6.8 below shows that a fully revealing maximin
REE may not be (private) maximin CIC. This suggests that a weaker notion of maximin
CIC is needed.

Definition 6.7 A feasible allocation x is said to be weak maximin coalitional incentive
compatible (weak MCIC) with respect to information structure Π, if the following does
not hold: there exists a coalition C and two states a and b such that

(I) Πi(a) = Πi(b) for all i /∈ C,
(II) ui(a, xi(a)) = ui(a, xi(b)) for all i /∈ C,
(III) ei(a) + xi(b)− ei(b) ∈ R`+ for all i ∈ C, and
(IV ) uΠi

i (a, yi) > uΠi
i (a, xi) for all i ∈ C,

where for all i ∈ C,

(∗) yi(s) =

{
ei(a) + xi(b)− ei(b) if s = a
xi(s) otherwise.

Condition (II) of Definition 6.7 does not necessarily mean that xi(·) is Πi-measurable
for all i /∈ C, neither that xi(a) = xi(b). It just guarantees, together with (I), that
individuals not in coalition C are not able to detect a misreport by coalition C.

Clearly, any maximin CIC allocation is also weak maximin CIC whatever is the
information structure Π, but the converse may not be true as shown by the following
example.

Example 6.8 We consider the Example 3.1 in Glycopantis, Muir, and Yannelis (2005)
that we recall below.27 There are two agents I = {1, 2}, two commodities and three
states of nature S = {a, b, c}. The primitives of the economy are given as follows

e1(a) = e1(b) = (7, 1) e1(c) = (4, 1) F1 = {{a, b}, {c}} u1(·, x1, y1) =
√
x1y1

e2(b) = e2(c) = (1, 7) e2(a) = (1, 10) F2 = {{a}, {b, c}} u2(·, x2, y2) =
√
x2y2.

In this economy the unique (Bayesian) REE is the following:

(p1(a), p2(a)) =
(
1, 8

11

)
(x1(a), y1(a)) =

(
85
22 ,

85
16

)
(x2(a), y2(a)) =

(
91
22 ,

91
16

)
(p1(b), p2(b)) = (1, 1) (x1(b), y1(b)) = (4, 4) (x2(b), y2(b)) = (4, 4)
(p1(c), p2(c)) =

(
1, 5

8

)
(x1(c), y1(c)) =

(
37
16 ,

37
10

)
(x2(c), y2(c)) =

(
43
16 ,

43
10

)
.

Notice that (p, x) is a fully revealing (Bayesian) REE and hence it is also a maximin
REE. Moreover, x is weak (private) maximin CIC, but it is not (private) maximin CIC.

27We thank Liu Zhiwei for having suggested this example us.
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Indeed, take C = {2} and the two states a and b, and observe that

F1(a) = F1(b)

(e1
2(a) + x2(b)− e1

2(b), e2
2(a) + y2(b)− e2

2(b)) = (1 + 4− 1, 10 + 4− 7) = (4, 7)� 0

u2(a, e1
2(a) + x2(b)− e1

2(b), e2
2(a) + y2(b)− e2

2(b)) =
√

28 >

√
912

352
= u2(a, x2(a), y2(a)).

Hence, x is not (private) maximin CIC, but there does not exist two states s1 and
s2 and an agent i, such that

Fi(s1) = Fi(s2)√
xi(s1)yi(s1) =

√
xi(s2)yi(s2).

Therefore, x is weak (private) maximin coalitional incentive compatible.

Proposition 6.9 Assume that ei(·) is Fi-measurable for all i ∈ I and let (p, x) be a
maximin rational expectations equilibrium. If one of the following conditions holds
true:

1. ui(·, y) is Fi-measurable28 for any i ∈ I and any y ∈ R`+;

2. p is fully revealing, i.e., σ(p) = F;

then x is weak (private) maximin coalitional incentive compatible.

Proof: See Appendix.

Remark 6.3 Although in Kreps’s example, the utility functions are not private infor-
mation measurable, the unique maximin rational expectations equilibrium is (private)
maximin coalitional incentive compatible, since the equilibrium price p is non reveal-
ing (see Remarks 6.4 and 6.2). On the other hand, in Example 6.8 both hypotheses
of Proposition 6.9 are satisfied and the maximin REE is weak (private) maximin CIC.
However, as it has been already observed, it is not (private) maximin CIC.

Remark 6.4 As a corollary of Theorem 6.6 we deduce that any maximin rational ex-
pectations equilibrium is maximin individual incentive compatible. Moreover, it should
be noted that the maximin rational expectations equilibrium in Kreps’ example (Ex-
ample 3.3) is coalitional incentive compatible. Indeed if state s1 occurs and agent 1
announces s2, then

u1(s1, e
1
1(s1)+x1(s2)−e1

1(s2), e2
1(s1)+y1(s2)−e2

1(s2)) = log2+1 < 2 = u1(s1, x1(s1), y1(s1)).

On the other hand, if state s2 occurs and agent 1 announces s1, then

u1(s2, e
1
1(s2)+x1(s1)−e1

1(s1), e2
1(s2)+y1(s1)−e2

1(s1)) = 2 < 2log2+1 = u1(s2, x1(s2), y1(s2)).

Therefore, the unique maximin rational expectations equilibrium in Example 3.3 is
maximin CIC.

28Notice that the measurability assumption of utility functions is not too strong when we deal with coali-
tional incentive compatibility notions (see for example Koutsougeras and Yannelis (1993), Krasa and Yan-
nelis (1994), Angeloni and Martins-da Rocha (2009) where the utility functions are assumed to be state
independent, and therefore Fi-measurable.)
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7 Discussion
We introduced a new rational expectations equilibrium notion which departs from the
Bayesian (subjective expected utility) formulation. Our new rational expectations equi-
librium notion is formulated in terms of (a particular version of) Gilboa-Schmeidler’s
maximin expected utility. Furthermore, the resulting equilibrium allocations need not
to be measurable with respect to the private information and the information the equi-
librium prices have generated as in the case of the Bayesian REE. Our new notion
exists universally (and not generically). We also show that it is also Pareto efficient and
incentive compatible. These results are false for the Bayesian REE (see Kreps (1977)
and Glycopantis and Yannelis (2005)).

As the reader should have noticed, one important aspect of our theory is private
information measurability. We discuss this in detail below.

7.1 Private information measurability and incentive compatibility
In view of the several examples in this paper, it seems that the private information
measurability of allocations in the definition of the REE creates problems. Recall that
in the ex ante expected utility case (e.g., Radner (1968) and Yannelis (1991)) the role
of the private information measurability of allocations is two-fold.

First it highlights the relevance of asymmetric information. If this condition is
relaxed, then agents behave as they have symmetric information and the information
partition does not influence the payoff of each player. Hence the asymmetric informa-
tion in the Radner (1968) model is modeled by the private information measurability
of allocations. In contract, in our MEU modeling the asymmetry of information is cap-
tured by the definition of the MEU itself. Specifically priors are defined on the events
of each partition of each agents and therefore the MEU itself models the information
asymmetry. Consequently there is no need to assume that allocations are private infor-
mation measurable as it is the case with the Bayesian modeling of Radner.

Second, in the one good case the private information measurability of allocations
becomes a necessary and sufficient condition to ensure that trades are incentive com-
patible (e.g., Krasa and Yannelis (1994)), and in the multi good case it is a sufficient
condition to ensure incentive compatibility. Thus, the private information measurabil-
ity seems to be a desirable assumption in the ex ante case as it ensures that ex-ante
private information Pareto optimal allocations are interim incentive compatible.

However, this is not the case with the Bayesian REE as it is not necessarily incentive
compatible (Glycopantis, Muir, and Yannelis (2005)). Also, in the ex ante case as
we mentioned above, the private information measurability amounts to asymmetric
information but in the interim stage, (e.g., REE case), the interim expected utility is
automatically private information measurable as it is conditioned on the event in the
private information of each agent, thus constant on the individual’s event. Hence, the
asymmetric information in the interim case enters the model via the interim utility
function of each agent. By also imposing the private information measurability on
allocations we end up with an existence of equilibrium problem as the Kreps’s example
clearly indicates. To the best of our knowledge, we do not know what the private
information measurability means or accomplishes in the interim framework, as the
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conditional expected utility is already private information measurable. We fail to see
the importance or usefulness of the private information measurability of allocations
because the counterexamples in Glycopantis and Yannelis (2005) show that the REE is
not implementable, is not incentive compatible and it is not efficient.

In a general equilibrium model with asymmetric information, it is possible that the
MEU choice does not reflect pessimistic behavior, but rather incentive compatible be-
havior. If an agent plays against the nature (e.g., Milnor game), since, nature is not
strategic, it makes sense to view the MEU decision making as reflecting pessimistic
behavior. However, when you negotiate the terms of a contract under asymmetric in-
formation and the other agents have an incentive to misreport the state of nature and
benefit, then the MEU provides a mechanism to prevent others from cheating you.
This in not pessimism, but incentive compatibility. It is exactly for this reason that the
MEU solves the conflict between efficiency and incentive compatibility (see for exam-
ple de Castro and Yannelis (2011)). This conflict seems to be inherent in the Bayesian
analysis, where agents must assign probabilities to complete unknown states and those
probabilities could be very far from the “true" ones.

7.2 Our maximin model
The reader may have noted that in some results29, our MEU formulation is a particular
form of the original Gilboa-Schmeiler model. Namely, we assume a particular set
of probabilities, Csi , which comprises all probabilities with support contained in the
element of the partition Πi(s).

Some researchers have expressed the view that this model assumes too much pes-
simism and that it would be desirable to allow the set Ci of probabilities to be a strict
subset of Csi .

There are at least two responses to this criticism. First, we can conceive the par-
tition model as a description of all information that the individual has. If we take this
principle seriously, this means that once individual i is informed of its element Πi(s),
he knows nothing else. In particular, he has no information about the likelihood or
probability of the states inside that partition. If the partition represents his knowledge,
he is completely ignorant beyond it, that is, he has no relevant information to rule out
any probability in Csi . This is related to the literature of complete ignorance that flour-
ished in 1950’s. For example, Milnor (1954) discusses this hypothesis of complete
ignorance in games against nature as follows:

“Our basic assumption that the player has absolutely no information about
Nature may seem too restrictive. However such no-information games
may be used as normal form for a wider class of games in which certain
types of partial information is allowed. For example if the information
consists of bounds for the probabilities of the various states of Nature,
then by considering only those mixed strategies for Nature which satisfy
these bounds, we construct a new game having no information.” (Milnor,
1954, p.49)

29Incentive compatibility results only, since for the rest we may consider a more general framework by
adopting suitable modifications.
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Thus, according to this view, we can reduce the partial information that is outside
the partition and is represented in some knowledge of the probabilities Ci, in a new
model with no information left; this would be the model that we are analyzing.

A second response to this criticism begins by recalling the standard practice in
economic theory that an unrealistic assumption is used to capture in a simplistic form a
phenomenon that is quite realistic. Even with unrealistic assumptions, economic theory
was frequently able to provide good insights about the real world. In our case, the
restrictive assumption about the preference is a simplistic way to capture a phenomenon
that is universal: indifference among indistinguishable bundles. When people do not
have a good reason to prefer an option over other, they are frequently indifferent. The
main reason of why our result is true is the indifference between some specific bundles.
Our formalization just captures this property in a way that allows us to obtain the result
in a clear and straightforward way.

It is useful to put in perspective the relationship of this assumption with the prob-
lems of the REE mentioned in the introduction, namely, the unrealistic rationality re-
quired from agents by the REE paradigm. In our case, the indifference among bundles
that are not clearly better restrain the implications of excessive rationality required by
REE. Thus, this model may indicate, at least conceptually, a way out of the REE co-
nundrum.

We refrain from taking a strong position in accordance to one or other response,
but do submit that exploring variations of the REE concept, as we do here, may lead to
a better understanding of the REE phenomenon. This is perhaps the best justification
for our study of this model.

7.3 Open questions
We conclude this paper with some open questions.

Throughout we have used the assumption that there is a finite number of states. We
conjecture that the main existence theorem can be extended to infinitely many states
of nature of the world and even to an infinite dimensional commodity space.30 Some
progress in this direction has been made in Bhowmik, Cao, and Yannelis (2014).

In Glycopantis, Muir, and Yannelis (2005) it was shown that the Bayesian REE
is not implementable as a perfect Bayesian equilibrium of an extensive form game.
We conjecture that a new definition of perfect maximin equilibrium can be introduced,
which will be compatible with the implementation of the maximin REE. What rein-
forces this conjecture is the fact that incentive compatible equilibrium notions, i.e., pri-
vate core (Yannelis (1991)) and private value allocations (Krasa and Yannelis (1994))
are implementable as a perfect Bayesian equilibrium. Since, the maximin REE is also
maximin incentive compatible, we believe that such a conjecture should be true. The
recent papers de Castro, Yannelis, and Zhiwei (2015); Zhiwei (2015) analyze this issue
and obtain interesting results. Indeed, in Zhiwei (2015) it is shown that the MREE is

30 For the ex-ante case some existence and equivalence results are obtained in He and Yannelis (2015).
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implementable as a “maximin equilibrium.”31

It is also of interest to know if the results of this paper could be extended to a con-
tinuum of agents, or to a more general setup such as mixed markets.

Based on the Bayesian expected utility formulation, Sun, Wu, and Yannelis (2012)
show that with a continuum of agents, whose private signals are independent condi-
tioned on the macro states of nature, a REE universally exists, it is incentive compatible
and efficient. These results have been obtained by means of the law of large numbers.
It is of interest to know if the theorems of this paper can be extended in such a frame-
work which makes the law of large numbers applicable.

Furthermore, it is of interest to know under what conditions the core-value-REE
equivalence theorems hold for the maximin expected utility framework.

8 Appendix

8.1 Proofs of Section 3
Proof of Lemma 3.1: If yi ∈ LREEi , that is, yi is Gi-measurable, then p(s) · yi(s) ≤
p(s) · ei(s) is equivalent to p(s′) · yi(s′) ≤ p(s′) · ei(s′) for all s′ ∈ Gi(s), which
establishes the equivalence of (i) and (iii).

(ii) ⇔ (iii): Assume that yi is Gi-measurable (i.e., yi ∈ LREEi ). Since Gi =
Fi ∨ σ(p), then p(·) is Gi-measurable for all i ∈ I , as well as the initial endowment
ei(·) because it is Fi-measurable and Fi ⊆ Gi. Therefore, for all i ∈ I and all s ∈ S∑

s′∈Gi(s)

p(s′) · yi(s′) = p(s) · yi(s) |Gi(s)| and

∑
s′∈Gi(s)

p(s′) · ei(s′) = p(s) · ei(s) |Gi(s)| ,

where |Gi(s)| is the number of states in the event Gi(s). Hence, for all i ∈ I and
yi ∈ LREEi ,

p(s) · yi(s) ≤ p(s) · ei(s) ⇔
∑

s′∈Gi(s)

p(s′) · yi(s′) ≤
∑

s′∈Gi(s)

p(s′) · ei(s′).

2

Proof of Proposition 3.4: Assume on the contrary that there exists an agent i ∈ I
and two states a, b ∈ S such that a ∈ Gi(b) and xi(a) 6= xi(b). Consider zi(s) =

31 Maximin equilibrium is a non cooperative equilibrium notion that captures the idea that each player
maximizes his interim payoff taking into account what is the worst possible state that can occur and also
the worst possible announcement of all the other players against him, see de Castro, Yannelis, and Zhiwei
(2015).
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αxi(a) + (1 − α)xi(b) for all s ∈ Gi(b), where α ∈ (0, 1), and notice that zi is
constant in the event Gi(b). Moreover,

uREEi (b, zi) = min
s∈Gi(b)

ui(s, zi(s)) = min
s∈Gi(b)

ui(s, αxi(a) + (1− α)xi(b))

Since ui(·, y) is Gi-measurable for all y ∈ R`+, from strict quasi concavity of ui it
follows that

uREEi (b, zi) = ui(b, αxi(a) + (1− α)xi(b)) > min{ui(b, xi(a)), ui(b, xi(b))}
= min{ui(a, xi(a));ui(b, xi(b))} ≥ min

s∈Gi(b)
ui(s, xi(s))

= uREEi (b, xi).

Since (p, x) is a maximin rational expectations equilibrium it follows that zi /∈ Bi(b, p),
that is, there exists a state si ∈ Gi(b) such that

p(si) · zi(si) > p(si) ·ei(si) ⇒ αp(si) ·xi(a) + (1−α)p(si) ·xi(b) > p(si) · ei(si).

Moreover, since p(·) and ei(·) are Gi-measurable and p(s) · xi(s) ≤ p(s) · ei(s) for all
s ∈ S (see condition (i) in Definition 3.2), it follows that p(si) · ei(si) > p(si) · ei(si),
which is a contradiction. 2

Proof of Proposition 3.5: Because of Lemma 3.1, all we need to show is that
the maximin utility and the (Bayesian) interim expected utility coincide. Since for all
i ∈ I and for all y ∈ R`+, ui(·, y) is Fi-measurable and Fi ⊆ Gi, then ui(·, y) is
Gi-measurable.

Moreover, since for each i ∈ I , xi(·) is Gi-measurable it follows that for all i ∈ I
and s ∈ S, both maximin and interim utility function are equal to the ex-post utility
function. That is,

uREEi (s, xi) = min
s′∈Gi(s)

ui(s
′, xi(s

′)) = ui(s, xi(s)) (14)

and

vi(xi|Gi)(s) =
∑

s′∈Gi(s)

ui(s
′, xi(s

′))
πi(s

′)

πi (Gi(s))
= ui(s, xi(s)). (15)

From (14) and (15) it follows that for all i and s, uREEi (s, xi) = vi(xi|Gi)(s).
Therefore, we can conclude that if (p, x) is a Bayesian REE, then (p, x) is a MREE;
the converse is also true if xi(·) is Gi-measurable for all i ∈ I . 2

Proof of Proposition 3.6: For each s ∈ S, let

H(s) = {h ∈ {1, . . . , `} : ph(s) = 0},
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and let
S̄ = {s ∈ S : H(s) 6= ∅}.

Since (p, x) is a maximin REE, we consider the information generated by the equi-
librium price, that is the algebra σ(p). Clearly, H(·) is σ(p)-measurable32, because
p(s1) = p(s2) whenever σ(p)(s1) = σ(p)(s2). Moreover, since for any i ∈ I , σ(p) is
coarser than Gi = Fi ∨ σ(p), it follows that for all i ∈ I

H(·) is Gi −measurable. (16)

Now, assume on the contrary that S̄ is non empty and let s̄ ∈ S̄. Hence, H(s̄) 6= ∅,
i.e., there exists at least a “free" good h such that ph(s̄) = 0. Let i ∈ I be the agent such
that ui(s, ·) is strictly monotone for any s ∈ S; and define the following allocation:

zhi (s) =

{
xhi (s) +K if s ∈ Gi(s̄) and h ∈ H(s)
xhi (s) otherwise,

where K > 0.

Notice that for any s ∈ Gi(s̄), since H(s) = H(s̄) 6= ∅ (see (16)), from the strict
monotonicity it follows that ui(s, zi(s)) > ui(s, xi(s)) for all s ∈ Gi(s̄), and hence

uREEi (s̄, zi) > uREEi (s̄, xi).

Since (p, x) is a maximin REE, zi /∈ Bi(s̄, p), that is there exists a state si ∈ Gi(s̄)
such that

p(si) · [zi(si)− ei(si)] > 0.

From (16), it follows that H(si) = H(s̄) 6= ∅, and therefore

0 < p(si) · [zi(si)− ei(si)] =∑
h∈H(si)

ph(si)[x
h
i (si) +K − ehi (si)] +

∑
h/∈H(si)

ph(si)[x
h
i (si)− ehi (si)] =

0 +
∑

h/∈H(si)

ph(si)[x
h
i (si)− ehi (si)] =

∑
h∈H(si)

ph(si)[x
h
i (si)− ehi (si)] +

∑
h/∈H(si)

ph(si)[x
h
i (si)− ehi (si)] =

p(si) · [xi(si)− ei(si)] ≤ 0.

This is a contradiction, hence p(s)� 0 for each s ∈ S. 2

Proof of Proposition 3.7: Let (p, x) be a maximin rational expectations equilib-
rium and define for each agent i ∈ I and state s ∈ S the following set:

Mi(s) =
{
s′ ∈ Gi(s) : uREEi (s, xi) = ui(s

′, xi(s
′))
}
.

32We mean that H(s1) = H(s2) if σ(p)(s1) = σ(p)(s2).
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Clearly, since S is finite, for all i ∈ I and s ∈ S, the set Mi(s) is nonempty,
i.e., Mi(s) 6= ∅. Moreover, if s′ ∈ Gi(s) \ Mi(s) it means that uREEi (s, xi) <
ui(s

′, xi(s
′)). Thus, we want to show that for all i ∈ I and s ∈ S, Mi(s) = Gi(s).

Assume on the contrary that there exists an agent j ∈ I and a state s̄ ∈ S such that
Gj(s̄) \Mj(s̄) 6= ∅. Notice that

uREEj (s̄, xj) < uj(s, xj(s)) for any s ∈ Gj(s̄) \Mj(s̄).

Fix s′ ∈ Gj(s̄) \Mj(s̄) and define the following allocation

yj(s) =

{
xj(s) if s ∈ Gj(s̄) \Mj(s̄)
xj(s

′) if s ∈Mj(s̄).

Since the utility functions are assumed to be private information measurable, it
follows that uj(s, yj(s)) > uREEj (s̄, xj) for any s ∈ Gj(s̄), and hence uREEj (s̄, yj) >

uREEj (s̄, xj). Recall that (p, x) is a maximin REE, therefore there exists s ∈ Gj(s̄)
such that p(s)·yj(s) > p(s)·ej(s). If s ∈Mj(s̄), then p(s)·xj(s′) > p(s)·ej(s). Since
p(·) and ej(·) are both Gj-measurable, it follows that p(s′) = p(s) and ej(s′) = ej(s).
This implies that p(s′) ·xj(s′) > p(s′) ·ej(s′), which is clearly a contradiction. On the
other hand, if s ∈ Gj(s̄) \Mj(s̄), thus we have that p(s) · xj(s) > p(s) · ej(s) which
is a contradiction as well. Therefore, for each i ∈ I and s ∈ S, Mi(s) = Gi(s). 2

8.2 Proofs of Section 4
The following section has an its own meaning as it presents some comparisons between
maximin REE and other solutions concepts. It is also useful to prove the existence of a
maximin REE.

8.2.1 Some comparisons

Given a differential information economy E described in Section 2, since S is finite,
there is a finite number of complete information economies {E(s)}s∈S . For each fixed
s in S, the complete information economy E(s) is given as follows:

E(s) =
{
I,R`+, (ui(s), ei(s))i∈I

}
,

where I = {1, . . . , n} is still the set of n agents, and for each i ∈ I , ui(s) = ui(s, ·) :
R`+ → R and ei(s) ∈ R`+ represent respectively the utility function and the initial
endowment of agent i. A feasible allocation x is said to be an ex-post Walrasian equi-
librium allocation if there exists a price p : S → R`+ such that for any state of nature
s ∈ S, the pair (x(s), p(s)) is a Walrasian equilibrium for the complete information
economy E(s). It is well now that any ex-post Walrasian equilibrium is ex-post Pareto
optimal (see Definitions 5.1 and 5.6).
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We now investigate on some relationships between maximin REE and ex-post Wal-
rasian equilibria.

We first prove that the set of V-REE allocations and a fortiori of maximin REE
allocations (see Remark 4.5) contains all the selections from the Walrasian equilibrium
correspondence of the associated family of complete information economies.

Lemma 8.1 If (x, p) is an ex-post Walrasian equilibrium, then (x, p) is a V-REE, and
in particular it is a maximin REE.

Proof: Let (x, p) an ex-post Walrasian equilibrium, we want to show that (x, p) is a
V-REE. First, notice that x is feasible in the economy E since so is x(s) in the economy
E(s) for each s, and p is a price function since for any s ∈ S, p(s) > 0. Consider the
algebra generated by p denoted by σ(p), and for each agent i let Gi = Fi ∨ σ(p). We
show that (p, x) is a V-rational expectations equilibrium for E . Clearly, p(s) · xi(s) ≤
p(s) · ei(s) for all i and s, hence xi ∈ Bi(s, p) for all i and s. It remains to prove
that xi maximizes Vi(·,Gi, s) on Bi(s, p). Assume, on the contrary, that there exists an
alternative allocation y ∈ L such that for some agent i and some state s,

Vi(yi,Gi, s) > Vi(xi,Gi, s), and (17)

yi ∈ Bi(s, p), that is

p(s′) · yi(s′) ≤ p(s′) · ei(s′) for all s′ ∈ Gi(s). (18)

From (∗) it follows that there exists a state s̄ ∈ Gi(s) such that

ui(s̄, yi(s̄)) > ui(s̄, xi(s̄)).

Since (p(s̄), x(s̄)) is a Walrasian equilibrium for E(s̄), it follows that, p(s̄) ·yi(s̄) >
p(s̄) · ei(s̄), which clearly contradicts (18). 2

In particular, any ex-post Walrasian equilibrium is a maximin REE. The converse
is not true (see Example 4.2) unless agents’ utility functions and initial endowments
are private information measurable. The next lemma holds true for the general MEU
formulation (8) provided that for any agent i and state s, the set Ms

i contains only
positive priors (see section 8.5).

Lemma 8.2 If (ui, ei) ⊆ Fi for all i ∈ I , then any ex-post Walrasian equilibrium is a
maximin REE and viceversa.

Proof: One inclusion is shown in Lemma 8.1 for which no measurability assumption
is needed. In order to prove the converse, let (x, p) a maximin REE and consider for
any agent i ∈ I the algebra Gi = Fi ∨ σ(p). The monotonicity assumption on agents’
utility function ensures that for any s ∈ S the equilibrium price p(s) is positive in E(s),
i.e., p(s) 6= 0 for any s ∈ S. Clearly, feasibility and budget constrains hold. Assume
on the contrary that for some state s the pair (x(s), p(s)) is not a Walrasian equilibrium
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for the complete information economy E(s). This means that there exist an agent j and
an alternative allocation y ∈ R`+ such that

(i) uj(s, y) > uj(s, xj(s))

(ii) p(s) · y ≤ p(s) · ei(s).

Let zj(s′) = y for any s′ ∈ Gj(s), and notice that since uj(·, z) is Fj-measurable and
a fortiori Gj-measurable, from (i) it follows that

uREEj (s, zj) = uj(s, y) > uj(s, xj(s)) ≥ uREEi (s, xi).

Recall that (x, p) is a maximin rational expectations equilibrium, thus there exists s̄ ∈
Gj(s) such that

p(s̄) · zj(s̄) > p(s̄) · ej(s̄).

Since ej(·) and p(·) are Gj-measurable, it follows that

p(s) · y > p(s) · ei(s),

which contradicts (ii). 2

For the general case of V −REE we need a stronger version of Axiom 4 in de Cas-
tro, Pesce, and Yannelis (2011), as Proposition 4.6 states. Here there is the proof.

Proof of Proposition 4.6: One inclusion is shown in Lemma 8.1. In order to prove
the converse, let (x, p) a V-REE and consider for any agent i ∈ I the algebra Gi =
Fi ∨ σ(p). Condition (∗ ∗ ∗) implies that for any s ∈ S the equilibrium price p(s)
is positive in E(s), i.e., p(s) 6= 0 for any s ∈ S. Clearly, feasibility and budget
constrains hold. Assume on the contrary that for some state s the pair (x(s), p(s)) is
not a Walrasian equilibrium for the complete information economy E(s). This means
that there exist an agent j and an alternative allocation y ∈ R`+ such that

(i) uj(s, y) > uj(s, xj(s))

(ii) p(s) · y ≤ p(s) · ei(s).

Let zj(s) = y and zj(s′) = y for any s′ ∈ Gj(s) \ {s}. Condition (∗ ∗ ∗) implies that
Vj(zj ,Gj , s) > Vj(xj ,Gj , s), and hence there must exist s̄ ∈ Gj(s) such that

p(s̄) · zj(s̄) > p(s̄) · ej(s̄).

This is impossible by the definition of zj , because it contradicts (ii). 2

Remark 8.3 Theorem 4.3 states that if in addition ui(s, ·) is strict quasi-concave for
all i ∈ I and s ∈ S, the ex-post Walrasian equilibria coincide also with the (Bayesian)
rational expectations equilibrium (see also Einy, Moreno, and Shitovitz (2000) and
De Simone and Tarantino (2010)). Moreover, Lemma 8.2 also holds if the budget set
of MREE allocations is B∗i (s, p) defined as (11).
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8.2.2 The existence proof

Proof of Theorem 4.5: Since S is finite, there is a finite number of complete in-
formation economies E(s) = {I,R`+, (ui(s), ei(s))i∈I}, where for any i ∈ I and any
s ∈ S, ui(s) := ui(s, ·) : R`+ → R is continuous, quasi-concave; and ei(s) � 0. For
any s ∈ S, let W (E(s)) the set of Walrasian equilibrium allocations for the economy
E(s). The above assumptions ensure that for any s ∈ S, W (E(s)) 6= ∅. We prove it
for sake of completeness. Fix s ∈ S and let X(s) be a non empty, compact and convex
subset of R`+ defined as follows

X(s) =

{
y ∈ R`+ : 0 ≤ yk ≤

∑̀
h=1

∑
i∈I

ehi (s) for all k ∈ {1, . . . , `}

}
,

and let ∆ be the (` − 1)-dimensional unit simplex in R`+. For any i ∈ I define the
following correspondences

Bi(s, ·) : ∆ → 2X(s) such that

Bi(s, q) := {y ∈ X(s) : q · y ≤ q · ei(s)}
φi(s, ·) : ∆ → 2X(s) such that

φi(s, q) := {y ∈ Bi(s, q) : ui(s, y) ≥ ui(s, x) ∀x ∈ Bi(s, q)}.

It is easy to verify that for any i, Bi(s, ·) is a continuous, nonempty compact con-
vex valued correspondence. By the Berge Maximum Theorem, the correspondence
φi(s, ·) is nonempty-valued, compact-valued and upper hemicontinuous. Furthermore,
the quasi concavity of the utility function ui(s, ·) and the convex-valuedness ofBi(s, ·)
implies that φi(s, ·) is convex-valued.

Define the excess demand correspondence Z(s, ·) : ∆ → 2R
`

by Z(s, q) =∑
i∈I [φi(s, q) − ei(s)]. Then, Z(s, ·) is nonempty compact convex valued and up-

per hemicontinuous. Moreover, for any q ∈ ∆ and any z ∈ Z(s, q), there ex-
ists xi ∈ φi(s, q) for any i ∈ I , so that, by definition, q · xi ≤ q · ei(s) for all
i ∈ I . Therefore, by summing up, for any q ∈ ∆, there exists z ∈ Z(s, q) such that
q · z ≤ 0. Thus, by the Debreu-Gale-Nikaido Theorem there exists p∗(s) ∈ ∆ such
that Z(s, p∗(s)) ∩ R`− 6= ∅. Take z∗(s) ∈ Z(s, p∗(s)) ∩ R`−. Then for any i, there
exists x∗i (s) ∈ φi(s, p∗(s)) such that

∑
i∈I [x

∗
i (s)− ei(s)] = z∗(s) ≤ 0. Since ui(s, ·)

is monotone for all i ∈ I , with standard arguments it follows that

p∗(s) · x∗i (s) = p∗(s) · ei(s) for all i ∈ I. (19)

Thus, for any i ∈ I ,

x∗i (s) ∈ argmaxy∈Bi(s,p∗(s))ui(s, y), where (20)
Bi(s, p

∗(s)) = {y ∈ X(s) : p∗(s) · y ≤ p∗(s) · ei(s)}.

We now show that for any i ∈ I ,

x∗i (s) ∈ argmaxy∈B∗i (s,p∗(s))ui(s, y), where

B̃i(s, p
∗(s)) = {y ∈ R`+ : p∗(s) · y ≤ p∗(s) · ei(s)}
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Assume on the contrary that there exists y ∈ R`+ such that for some i ∈ I ,
ui(s, y) > ui(s, x

∗
i (s)) and y ∈ B̃i(s, p∗(s)). Since ui(s, ·) is continuous and ei(s)�

0, we may assume, without loss of generality that p∗(s)·y < p∗(s)·ei(s). Clearly from
(20) it follows that y /∈ X(s), that isK =

{
k ∈ {1, . . . , `} : yk >

∑`
h=1

∑
i∈I e

h
i (s)

}
is non empty. Since for any h, xh∗i (s) <

∑`
h=1

∑
i∈I e

h
i (s), then for any k ∈ K

there exists εk ∈ (0, 1) such that εkyk + (1− εk)x∗ki (s) <
∑`
h=1

∑
i∈I e

h
i (s). Define

ε = mink∈K ε
k and zi(s) = εy+(1−ε)x∗i (s). Notice that zhi (s) <

∑`
h=1

∑
i∈I e

h
i (s)

for all h; u(s, zi(s)) ≥ min{ui(s, y), ui(s, x
∗
i (s))} = ui(s, x

∗
i (s)) and

p∗(s)·zi(s) = εp∗(s)·y+(1−ε)p∗(s)·x∗i (s) < εp∗(s)·ei(s)+(1−ε)p∗(s)·ei(s) = p∗(s)·ei(s).

This implies that zi(s) ∈ Bi(s, p
∗(s)) and ui(s, zi(s)) = ui(s, x

∗
i (s)). Notice that

1[p∗(s) · ei(s)− p∗(s) · zi(s)] ∈ intX(s), where 1 = (1, . . . , 1) ∈ R`+. Let δ ∈ (0, 1)
be such that

z̃i(s) = zi(s) + δ1[p∗(s) · ei(s)− p∗(s) · zi(s)] ∈ intX(s).

Then, z̃i(s)� zi(s) and hence ui(s, z̃i(s)) > ui(s, zi(s)) = ui(s, x
∗
i (s)). Moreover,

p∗(s) · z̃i(s) = p∗(s) · zi(s) + δp∗(s) · ei(s)− δp∗(s) · zi(s)
= (1− δ)p∗(s) · zi(s) + δp∗(s) · ei(s)
< (1− δ)p∗(s) · ei(s) + δp∗(s) · ei(s) = p∗(s) · ei(s).

Therefore, z̃i(s) ∈ Bi(s, p∗(s)) and ui(s, z̃i(s)) > ui(s, x
∗
i (s)), which contradicts

(20). Hence (p∗(s), x∗(s)) constitutes a free disposal Walrasian equilibrium for the
economy E(s).
We now show that there exists a Walrasian equilibrium in the economy E(s) satisfying
the exact feasibility. Assume33 that ε(s) =

∑
i∈I [ei(s) − x∗i (s)] > 0 and notice that

p∗(s) · ε(s) = 0 because of (19). Define for any i ∈ I the allocation yi(s) = x∗i (s) +
ε(s)
n > x∗i (s) which satisfies the exact feasibility in E(s) (i.e.,

∑
i∈I [yi(s) − ei(s)] =

0). Thanks to monotonicity of ui(s, ·), ui(s, yi(s)) ≥ ui(s, x
∗
i (s)) for any i ∈ I .

Moreover from (19) it follows that for any i ∈ I

p∗(s) · yi(s) = p∗(s) · x∗i (s) + p∗(s) · ε(s)
n

= p∗(s) · x∗i (s) + 0 = p∗(s) · ei(s).

Hence, ui(s, yi(s)) = ui(s, x
∗
i (s)) for any i ∈ I and thus (p∗(s), y(s)) is a Walrasian

equilibrium of the economy E(s) satisfying the exact feasibility, i.e., y(s) ∈W (E(s)).
Therefore for any s ∈ S, W (E(s)) 6= ∅.

Let W be the following set:

W = {x ∈ L | x(s) ∈W (E(s)) for all s ∈ S} ,

and notice that, as observed above, W is non empty. An element of W is an ex post
Walrasian equilibrium allocation and from Lemma 8.1 it is a V-REE. 2

33If ε(s) = 0, then x∗ satisfies the exact feasibility.
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Proof of Theorem 4.1: It trivially follows from Theorem 4.5 and the observation
that a MREE is a particular case of V-REE (see Remark 4.5). 2

Proof of Theorem 4.3: The equivalence between (1) and (2) is obtained by comb-
ing Propositions 3.4 and 3.5 (see Remark 3.4). The equivalence between (1) and (3) is
instead stated in Lemma 8.2. 2

8.3 Proofs of Section 5
Proof of Proposition 5.3: Let x be a maximin Pareto optimal allocation with respect
to the information structure Π and assume on the contrary that there exists a feasible
allocation y such that

ui(s, yi(s)) ≥ ui(s, xi(s)) for all i ∈ I and for all s ∈ S, with at least a strict inequality.

Let j ∈ I and s̄ ∈ S such that uj(s̄, yj(s̄)) > uj(s̄, xj(s̄)). Thanks to continuity
of uj(s̄, ·) there exists ε ∈ (0, 1) for which uj(s̄, εyj(s̄)) > uj(s̄, xj(s̄)). Consider the
feasible allocation z given by zi(s) = yi(s) for any i ∈ I and s ∈ S \ {s̄}; while in s̄

zi(s̄) =

{
εyj(s̄) if i = j
yi(s̄) + 1−ε

n−1yj(s̄) otherwise.

From the strict monotonicity it follows that the feasible allocation z is such that

ui(s, zi(s)) ≥ ui(s, xi(s)) for any i ∈ I and s ∈ S,
ui(s̄, zi(s̄)) > ui(s̄, xi(s̄)) for any i ∈ I.

Let k ∈ I be such that Πk(s̄) = {s̄}, thus

uΠi
i (s, zi) ≥ uΠi

i (s, xi) for any i ∈ I and s ∈ S,
uΠk

k (s̄, zk) = uk(s̄, zk(s̄)) > uk(s̄, xk(s̄)) = uΠk

k (s̄, xk).

This means that x is not maximin efficient with respect to the information structure
Π, which is a contradiction. We now show that the converse may not be true34. To
this end consider a differential information economy with two agents I = {1, 2}, two
goods and two states S = {a, b}. The primitives are as follows:

Π1 = {{a}, {b}} Π2 = {{a, b}}
e1(a) = (1, 2) e1(b) = (2, 1)
e2(a) = (1, 1) e2(b) = (1, 1)

ui(a, x, y) = log
√
xy ui(b, x, y) = log(xy) for any i ∈ I.

Notice that since the first agent is fully informed, the information structure Π sat-
isfies the assumption that for any state s there exists an agent i such that Πi(s) = {s}.
The following feasible allocation is ex-post efficient

(xi(a), yi(a)) =

(
1,

3

2

)
for any i ∈ I

34 Kreps’s example can also be used to show that an ex-post efficient allocation may not be maximin
Pareto optimal (see Remark 5.3).
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(xi(b), yi(b)) =

(
3

2
, 1

)
for any i ∈ I.

Indeed assume on the contrary the existence of an alternative feasible allocation
(t, z) such that ti(s)zi(s) ≥ 3

2 for all i ∈ I and s ∈ S, with at least one strict inequal-
ity.

Without loss of generality let t1(a)z1(a) > 3
2 , which means that35 z1(a) > 3

2t1(a) .
This implies that

(2− t1(a))

(
3− 3

2t1(a)

)
> (2− t1(a)) (3− z1(a)) = t2(a)z2(a) ≥ 3

2
,

which implies the contradiction (t1(a) − 1)2 < 0. Hence (x, y) is ex-post Pareto
optimal. We now show that it is not maximin efficient with respect to the information
structure Π. To this end consider the following feasible allocation

(ti(a), zi(a)) = (xi(a), yi(a)) for any i ∈ I,

(t1(b), z1(b)) =

(
7

4
, 1

)
(t2(b), z2(b)) =

(
5

4
, 1

)
,

and notice that

uΠ1
1 (a, t1, z1) = uΠ1

1 (a, x1, y1)

uΠ1
1 (b, t1, z1) = log

7

4
> log

3

2
= uΠ1

1 (b, x1, y1)

uΠ2
2 (a, t2, z2) = uΠ2

2 (b, t2, z2) = min

{
log

√
3

2
, log

5

4

}
= log

√
3

2

= min

{
log

√
3

2
, log

3

2

}
= uΠ2

2 (b, x2, y2) = uΠ2
2 (a, x2, y2).

Thus the allocation (x, y) is ex-post efficient but not maximin Pareto optimal with
respet to the information structure Π. 2

The next example shows that the assumption that for any state s there exists an
agent i ∈ I such that Πi(s) = {s} is crucial in the proof of Proposition 5.3.

Example 8.1 Consider a differential information economy with two agents I = {1, 2},
two goods and three states S = {a, b, c}, whose primitives are given as follows:

Π1 = {{a}, {b, c}} Π2 = {{a, b}, {c}}
e1(a) = (1, 1) e2(a) = (2, 2)
e1(b) = (2, 2) e2(b) = (2, 2)
e1(c) = (2, 2) e2(c) = (1, 1)

35Notice that (ti(s), zi(s))� 0 for any i ∈ I and any s ∈ S.
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ui(a, x, y) = log(xy) ui(b, x, y) =
√
xy ui(c, x, y) = xy for any i ∈ I.

Notice that Πi(b) \ {b} 6= ∅ for any i ∈ I . The following feasible allocation

(x1(a), y1(a)) =
(

3
2 ,

2
3

)
(x1(b), y1(b)) = (2, 2) (x1(c), y1(c))) =

(
3
2 ,

7
3

)
(x2(a), y2(a)) =

(
3
2 ,

7
3

)
(x2(b), y2(b)) = (2, 2) (x2(c), y2(c)) =

(
3
2 ,

2
3

)
is not ex-post efficient since it is blocked by the initial endowment, but it is maximin

Pareto optimal with respect to the information structure (Π1,Π2). Indeed, assume by
the way of contradiction the existence of an alternative feasible allocation (t, z) such
that uΠi

i (s, ti, zi) ≥ uΠi
i (s, xi, yi) for any i and any s with at least a strict inequality.

This means in particular that

t1(c)z1(c) ≥ min{
√
t1(b)z1(b), t1(c)z1(c)} ≥ min

{
2,

7

2

}
= 2

(3− t1(c))(3− z1(c)) ≥ 1,

which implies the inequality 3z2
1(c)− 10z1(c) + 6 ≤ 0 with no solution.

Proof of Theorem 5.4: Let (p, x) be a maximin rational expectations equilibrium.

I CASE: If σ(ui, ei) ⊆ Fi for each i ∈ I , Lemma 8.2 ensures that x is an ex-post
Walrasian equilibrium allocation and therefore it is ex-post efficient. We now want to
show that it is also maximin Pareto optimal. To this end, assume on the contrary that
there exists an alternative allocation y such that

(i) uREEi (s, yi) ≥ uREEi (s, xi) for all i ∈ I and for all s ∈ S,
with at least a strict inequality.

(ii)
∑
i∈I

yi(s) =
∑
i∈I

ei(s) for all s ∈ S.

Proposition 3.7 implies that for any agent i ∈ I and any state s ∈ S

ui(s, yi(s)) ≥ uREEi (s, yi) ≥ uREEi (s, xi) = ui(s, xi(s)),

with at least a strict inequality. This means that x is not ex-post efficient and from
Lemma 8.2 we get a contradiction.

II CASE: Assume that p is fully revealing. Clearly since Gi(s) = {s} for all i
and s, maximin Pareto optimality with respect to the information structure G coincides
with the ex-post efficiency. We have already observed that in this case a maximin REE
is an ex-post Walrasian equilibrium and hence it is both ex-post and maximin efficient.

Example 8.2 and Remark 5.3 show that if none of the above conditions is satisfied,
a maximin REE may not be maximin efficient. 2
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Proof of Proposition 5.7: Let x be a weak maximin efficient allocation and as-
sume, on the contrary, that there exists an alternative allocation y such that

(i) ui(s, yi(s)) > ui(s, xi(s)) for all i ∈ I and for all s ∈ S
(ii)

∑
i∈I

yi(s) =
∑
i∈I

ei(s) for all s ∈ S.

Thus, for each agent i ∈ I whatever his information partition is Πi, it follows from
(i) above that uΠi

i (s, yi) > uΠi
i (s, xi) for each state s. Hence, a contradiction since x

is weak maximin Pareto optimal. In order to show that the converse may not be true,
consider an economy with two agents, three states of nature, S = {a, b, c}, and two
goods, such that

ui(a, xi, yi) =
√
xiyi ui(b, xi, yi) = log(xiyi) ui(c, xi, yi) = x2

i yi for all i = 1, 2.

e1(a) = (2, 1) e2(a) = e1(b) = e2(b) = e1(c) = e2(c) = (1, 2)

Π1 = {{a, c}, {b}} Π2 = {{a}, {b, c}}.

Consider the following feasible allocation:

(x1(a), y1(a)) =

(
3,

1

3

)
(x2(a), y2(a)) =

(
0,

8

3

)
(x1(b), y1(b)) = (1, 2) (x2(b), y2(b)) = (1, 2) ,

(x1(c), y1(c)) = (2, 1) (x2(c), y2(c)) = (0, 3) .

Notice that it is weak ex post efficient, since if on the contrary there exists (t, z) such
that

ui(s, ti(s), zi(s)) > ui(s, xi(s), yi(s)) for all i ∈ I and all s ∈ S,

in particular, 
log(t1(b)z1(b) > log2
log(t2(b)z2(b)) > log2
t1(b) + t2(b) = 2
z1(b) + z2(b) = 4,

then36 {
z1(b) > 2

t1(b)

(2− t1(b))(2t1(b)− 1) > t1(b).

This implies that (t1(b) − 1)2 < 0, which is impossible. Thus, the above allocation
is weak ex post Pareto optimal, but it is not weak maximin efficient with respect to
the information structure Π, since it is (maximin) blocked by the following feasible
allocation:

36Clearly, (ti(b), zi(b))� (0, 0) for each i = 1, 2.
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(t1(a), z1(a)) =

(
5

4
,

5

2

)
(t2(a), z2(a)) =

(
7

4
,

1

2

)
(t1(b), z1(b)) =

(
1,

8

3

)
(t2(b), z2(b)) =

(
1,

4

3

)
(t1(c), z1(c)) =

(
3

4
, 2

)
(t2(c), z2(c)) =

(
5

4
, 2

)
.

Indeed,

uΠ1
1 (a, t1, z1) = uΠ1

1 (c, t1, z1) = min

{√
25

8
,

9

8

}
=

9

8

> 1 = min{1, 4} = uΠ1
1 (c, x1, y1) = uΠ1

1 (a, x1, y1)

uΠ1
1 (b, t1, z1) = u1(b, t1(b), z1(b)) = log

8

3

> log2 = u1(b, x1(b), y1(b)) = uΠ1
1 (b, x1, y1)

uΠ2
2 (a, t2, z2) = u2(a, t2(a), z2(a)) =

√
7

8

> 0 = u2(a, x2(a), y2(a)) = uΠ2
2 (a, x2, y2)

uΠ2
2 (b, t2, z2) = uΠ2

2 (c, t2, z2) = min

{
log

4

3
,

25

8

}
= log

4

3

> 0 = min{log2, 0} = uΠ2
2 (c, x2, y2) = uΠ2

2 (b, x2, y2).

2

Proof of Theorem 5.8: Clearly in the first two cases the result easily follows from
Theorem 5.4 and from the observation that any allocation maximin efficient with re-
spect to Π is weak maximin Pareto optimal with respect to Π.

Let (p, x) be a maximin rational expectations equilibrium, and assume on the con-
trary that there exists an alternative allocation y ∈ L such that

(i) uREEi (s, yi) > uREEi (s, xi) for all i ∈ I and for all s ∈ S,
(ii)

∑
i∈I

yi(s) =
∑
i∈I

ei(s) for all s ∈ S.

(iii) CASE: there exists a state of nature s̄ ∈ S, such that {s̄} = Gi(s̄) for all i ∈ I .

Since for each i ∈ I , {s̄} = Gi(s̄); from (i) it follows that uREEi (s̄, yi) =
ui(s̄, yi(s̄)) > ui(s̄, xi(s̄)) = uREEi (s̄, xi) for all i ∈ I . Hence, since (p, x) is a
MREE, for each agent i there exists at least one state si ∈ Gi(s̄) = {s̄} (that is si = s̄
for all i ∈ I) such that p(s̄) · yi(s̄) > p(s̄) · ei(s̄). Therefore,∑

i∈I
p(s̄)[yi(s̄)− ei(s̄)] > 0,
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which contradicts (ii).

(iv) CASE: n− 1 agents are fully informed.

Since (p, x) is a MREE, from (i) it follows that for any state s ∈ S and any agent
i ∈ I there exists at least one state si ∈ Gi(s) such that p(si) · yi(si) > p(si) · ei(si).
Let j be the unique not fully informed agent, and consider the state sj for which p(sj) ·
yj(sj) > p(sj) · ej(sj). Since each agent i 6= j is fully informed, it follows that
Gi(sj) = {sj} for all i 6= j. Thus,

p(sj) · yi(sj) > p(sj) · ei(sj) for all i ∈ I.

Hence, ∑
i∈I

p(sj) · yi(sj) >
∑
i∈I

p(sj) · ei(sj),

which is a contradiction.

Example 8.2 below shows that if no condition of Theorem 5.8 is satisfied, then a
maximin REE may not be weak maximin efficient (and a fortiori it may not be maximin
Pareto optimal). 2

Example 8.2 Consider a differential information economy with three states of nature,
S = {a, b, c}, two goods, ` = 2 (the first good is considered as numerarie) and three
agents, I = {1, 2, 3} whose characteristics are given as follows:

e1(a) = e1(b) = (2, 1) e1(c) = (3, 1) F1 = {{a, b}; {c}}
e2(a) = e2(c) = (1, 2) e2(b) = (2, 2) F2 = {{a, c}; {b}}
e3(b) = e3(c) = (2, 1) e3(a) = (3, 1) F3 = {{a}; {b, c}}.
u1(a, x, y) =

√
xy u1(b, x, y) = log(xy) u1(c, x, y) =

√
xy,

u2(a, x, y) = log(xy) u2(b, x, y) =
√
xy u2(c, x, y) =

√
xy,

u3(a, x, y) =
√
xy u3(b, x, y) =

√
xy u3(c, x, y) = log(xy).

Consider the following maximin rational expectations equilibrium

(p(a), q(a)) =
(
1, 3

2

)
(x1(a), y1(a)) =

(
7
4
, 7

6

)
(x2(a), y2(a)) =

(
2, 4

3

)
(x3(a), y3(a)) =

(
9
4
, 3

2

)
(p(b), q(b)) =

(
1, 3

2

)
(x1(b), y1(b)) =

(
7
4
, 7

6

)
(x2(b), y2(b)) =

(
5
2
, 5

3

)
(x3(b), y3(b)) =

(
7
4
, 7

6

)
(p(c), q(c)) =

(
1, 3

2

)
(x1(c), y1(c)) =

(
9
4
, 3

2

)
(x2(c), y2(c)) =

(
2, 4

3

)
(x3(c), y3(c)) =

(
7
4
, 7

6

)
,

and notice that it is a non revealing equilibrium, since (p(a), q(a)) = (p(b), q(b)) =
(p(c), q(c)) and hence σ(p, q) = {{a, b, c}}, that is Gi = Fi for any i ∈ I . Moreover,
notice that no condition of Theorems 5.4 and 5.8 is satisfied. We now show that the
equilibrium allocation is not weak maximin Pareto optimal with respect to the infor-
mation structure G = (Gi)i∈I and a fortiori it is neither maximin efficient. Indeed,
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consider the following feasible allocation

(t1(a), z1(a)) =

(
20

12
,

13

12

)
(t2(a), z2(a)) =

(
25

12
,

16

12

)
(t3(a), z3(a)) =

(
27

12
,

19

12

)
(t1(b), z1(b)) =

(
22

12
,

14

12

)
(t2(b), z2(b)) =

(
30

12
,

21

12

)
(t3(b), z3(b)) =

(
20

12
,

13

12

)
(t1(c), z1(c)) =

(
28

12
,

18

12

)
(t2(c), z2(c)) =

(
23

12
,

15

12

)
(t3(c), z3(c)) =

(
21

12
,

15

12

)
,

and notice that,

uREE1 (a, t1, z1) = uREE1 (b, t1, z1) = min

{√
260

144
, log

308

144

}
= log

308

144
> log

49

24
=

min

{√
49

24
, log

49

24

}
= uREE1 (a, x1, y1) = uREE1 (b, x1, y1),

uREE1 (c, t1, z1) = u1(c, t1(c), z1(c)) =

√
504

144
>

√
27

8
= u1(c, x1(c), y1(c)) = uREE1 (c, x1, y1),

uREE2 (a, t2, z2) = uREE2 (c, t2, z2) = min

{
log

400

144
,

√
345

144

}
= log

400

144
> log

8

3
=

min

{
log

8

3
,

√
8

3

}
= uREE2 (a, x2, y2) = uREE2 (c, x2, y2),

uREE2 (b, t2, z2) = u2(b, t2(b), z2(b)) =

√
630

144
>

√
25

6
= u2(b, x2(b), y2(b)) = uREE2 (b, x2, y2),

uREE3 (a, t3, z3) = u3(a, t3(a), z3(a)) =

√
513

144
>

√
27

8
= u3(a, x3(a), y3(a)) = uREE3 (a, x3, y3),

uREE3 (b, t3, z3) = uREE3 (c, t3, z3) = min

{√
260

144
, log

315

144

}
= log

315

144
> log

49

24
=

min

{√
49

24
, log

49

24

}
= uREE3 (b, x3, y3) = uREE3 (c, x3, y3).

Hence, the equilibrium allocation (x, y) is not weak maximin Pareto optimal with
respect to the information structure G = (Gi)i∈I .
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The following example shows that if there exists a state that everybody may distin-
guish (see condition (iii) of Theorem 5.8) then according to Theorem 5.8, a maximin
REE allocation is weak maximin efficient with respect to the information structure
(Gi)i∈I , but it is not maximin Pareto optimal.

Example 8.3 Consider a differential information economy with five states of nature,
S = {a, b, c, d, f}, two goods and two agents, I = {1, 2} whose characteristics are
given as follows:

e1(a) = e1(b) = (1, 2) e1(c) = e1(d) = e1(f) = (2, 1) F1 = {{a, b}; {c, d}; {f}}
e2(a) = e2(c) = e2(d) = e2(f) = (2, 1) e2(b) = (1, 2) F2 = {{a, c}; {b}; {d, f}}.

ui(a, x, y) = ui(c, x, y) =
√
xy ui(b, x, y) = ui(d, x, y) = log(xy) ui(f, x, y) = xy.

Consider the following maximin rational expectations equilibrium

(p(a), q(a)) = (1, 1) (x1(a), y1(a)) =
(

3
2 ,

3
2

)
(x2(a), y2(a)) =

(
3
2 ,

3
2

)
(p(b), q(b)) =

(
1, 1

2

)
(x1(b), y1(b)) = (1, 2) (x2(b), y2(b)) = (1, 2)

(p(c), q(c)) = (1, 2) (x1(c), y1(c)) = (2, 1) (x2(c), y2(c)) = (2, 1)
(p(d), q(d)) = (1, 2) (x1(d), y1(d)) = (2, 1) (x2(d), y2(d)) = (2, 1)
(p(f), q(f)) = (1, 2) (x1(f), y1(f)) = (2, 1) (x2(f), y2(f)) = (2, 1) ,

and notice that σ(p, q) = {{a}, {b}, {c, d, f}} and hence, G1 = {{a}, {b}, {c, d}, {f}}
and G2 = {{a}, {b}, {c}, {d, f}}.

For any i ∈ I the equilibrium allocation (xi, yi) is Gi-measurable but not Fi-
measurable. Moreover notice that the utility functions are not Fi-measurable neither
Gi-measurable, the equilibrium price is not fully revealing, and no agent is fully in-
formed. On the other hand, there exists a state s such that Gi(s) = {s} for any agent
i, for example states a and b, but such a condition does not hold for the initial infor-
mation structure (Fi)i∈I . Thus only condition (iii) of Theorem 5.8 is satisfied. From
this it follows that the equilibrium allocation (x, y) is weak efficient with respect to the
information structure (Gi)i∈I . We now show that x is not maximin efficient with re-
spect to the information structure (Gi)i∈I . To this end, consider the following feasible
allocation

(ti(s), zi(s)) = (xi(s), yi(s)) for any i = {1, 2} and any s ∈ {a, b, d}

(t1(c), z1(c)) =

(
3

2
, 1

)
(t2(c), z2(c)) =

(
5

2
, 1

)
(t1(f), z1(f)) =

(
5

2
, 1

)
(t2(f), z2(f)) =

(
3

2
, 1

)
,
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and notice that,

uREEi (s, ti, zi) = uREEi (s, xi, yi) for any i ∈ {1, 2} and any s ∈ {a, b}

uREE1 (c, t1, z1) = uREE1 (d, t1, z1) = min

{√
3

2
, log2

}
= log2

= min{
√

2, log2} = uREE1 (d, x1, y1) = uREE1 (c, x1, y1)

uREE2 (c, t2, z2) = u2(c, t2(c), z2(c)) =

√
5

2

>
√

2 = u2(c, x2(c), y2(c)) = uREE2 (c, x2, y2)

uREE1 (f, t1, z1) = u1(f, t1(f), z1(f)) =
5

2

> 2 = u1(f, x1(f), y1(f)) = uREE1 (f, x1, y1)

uREE2 (d, t2, z2) = uREE2 (f, t2, z2) = min

{
log2,

3

2

}
= log2

= min{log2, 2} = uREE2 (f, x2, y2) = uREE2 (d, x2, y2).

Hence, the equilibrium allocation is not maximin Pareto optimal with respect to the
information structure G = (Gi)i∈I .

The next example shows that if all agents except one are fully informed (i.e., con-
dition (iv) of Theorem 5.8 holds), then a maximin REE allocation is weak maximin
efficient with respect to the information structure (Gi)i∈I but it may not be maximin
Pareto optimal.

Example 8.4 Consider a differential information economy with two states of nature,
S = {a, b}, two goods and three agents, I = {1, 2, 3} whose characteristics are given
as follows:

e1(a) = e1(b) =
(

1
3 ,

1
3

)
F1 = {{a}; {b}}

e2(a) = e2(b) =
(

1
3 ,

1
3

)
F2 = {{a}; {b}}.

e3(a) = e3(b) =
(

1
3 ,

1
3

)
F3 = {{a, b}}.

ui(a, x, y) =
√
xy ui(b, x, y) = log(xy) for all i ∈ I.

Notice that for any i ∈ I ei(·) is Fi-measurable, while ui is not. Two agents are fully
informed. The initial endowment is a non-revealing maximin rational expectations
equilibrium and there does not exist a state s such that Gi(s) = {s} for any i, neither
Fi(s) = {s} for any i. Thus, only condition (iv) of Theorem 5.8 is satisfied. From
this it follows that the equilibrium allocation e is weak efficient with respect to the
information structure (Gi)i∈I , and since it is a non-revealing maximin REE it is also
weak efficient with respect to the information structure (Fi)i∈I (because Gi = Fi for
any i ∈ I). We now show that e is not maximin efficient with respect to the information
structure (Gi)i∈I and hence neither with respect to (Fi)i∈I . To this end, consider the
following feasible allocation
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(ti(a), zi(a)) =

(
5

12
,

5

12

)
for any i ∈ {1, 2},

(t3(a), z3(a)) =

(
1

6
,

1

6

)
,

(ti(b), zi(b)) =

(
1

3
,

1

3

)
for any i ∈ {1, 2, 3}.

Notice that,

uREEi (a, ti, zi) =
5

12
>

1

3
= uREEi (a, xi, yi) for any i ∈ {1, 2}

uREEi (b, ti, zi) = uREEi (b, xi, yi) for any i ∈ {1, 2}

uREE3 (a, t3, z3) = uREE3 (b, t3, z3) = min

{
1

6
, log

1

9

}
= log

1

9

= min

{
1

3
, log

1

9

}
= uREE3 (a, x3, y3) = uREE3 (b, x3, y3).

Hence, the equilibrium allocation e is not maximin Pareto optimal with respect to
the information structure G = (Gi)i∈I neither with respect to F = (Fi)i∈I .

Remark 8.4 The above Examples 8.3 and 8.4 also show that a weak maximin efficient
allocation may not be maximin Pareto optimal.

Proof of Theorem 5.10: Let (p, x) be a maximin rational expectations equilibrium
and assume on the contrary that there exists an alternative feasible allocation y such that

ui(s, yi) > ui(s, xi) for all i ∈ I and s ∈ S. (21)

(a) CASE: If there exists a state of nature s̄ ∈ S, such that {s̄} = Fi(s̄) for all i ∈ I ,
then in particular from (21) it follows that for all i ∈ I

uREEi (s̄, yi) = ui(s̄, yi(s̄)) = ui(s̄, yi) > ui(s̄, xi) = ui(s̄, xi(s̄)) = uREEi (s̄, xi).

Thus, since (p, x) is a maximin rational expectations equilibrium for all i ∈ I there
exists a state si ∈ Gi(s̄) = {s̄} (i.e., si = s̄ for all i ∈ I) such that p(si) · yi(si) >
p(si) · ei(si), that is

p(s̄) · yi(s̄) > p(s̄) · ei(s̄) for all i ∈ I.

Hence
p(s̄) ·

∑
i∈I

[yi(s̄)− ei(s̄)] > 0,

which contradicts the feasibility of the allocation y. Thus x is weak maximin efficient
with respect to the information structure F . Moreover, notice that if there is a state of
nature s̄ such that Fi(s̄) = {s̄} for all i ∈ I , then a fortiori Gi(s̄) = {s̄} for all i ∈ I .
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This means that condition (iii) of Theorem 5.8 is satisfied and hence x is maximin
Pareto optimal also with respect to the information structure G.

(b) CASE: If the n−1 agents are fully informed, condition (iv) of Theorem 5.8 holds
and hence x is weak maximin efficient with respect to the information structure G. We
want to show that x is maximin Pareto optimal also with respect to the information
structure F . To this end, assume without loss of generality that 1 is the unique non
fully informed agent and let s be a state of nature. From (21) it follows in particular
that there exists s̄ ∈ F1(s) such that

uREE1 (s̄, y1) ≥ u1(s̄, y1) > u1(s̄, x1) = uREE1 (s̄, x1).

Since (p, x) is a maximin REE, there exists a state s′ ∈ G1(s̄) such that

p(s′) · y1(s′) > p(s′) · e1(s′). (22)

Any agent i 6= 1 is fully informed, then (21) implies that

uREEi (s′, yi) = ui(s
′, yi(s

′)) = ui(s
′, yi) > ui(s

′, xi) = ui(s
′, xi(s

′)) = uREEi (s′, xi).

Thus, for all i 6= 1 there exists a state si ∈ Gi(s′) = {s′} (i.e., si = s′ for all i 6= 1,
because they are all fully informed) such that p(si) · yi(si) > p(si) · ei(si), that is

p(s′) · yi(s′) > p(s′) · ei(s′) for all i 6= 1. (23)

Hence from (22) and (23) it follows that

p(s′) ·
∑
i∈I

[yi(s
′)− ei(s′)] > 0,

which contradicts the feasibility of the allocation y.

We now show that if none of the above conditions is satisfied, then a maximin
REE may not be weak maximin efficient with respect to the information structure
F = (Fi)i∈I and a fortiori maximin Pareto optimal. To this end, consider a differential
information economy with two states of nature, S = {a, b}, two goods, ` = 2 (the first
good is considered as numerarie) and three agents, I = {1, 2, 3} whose characteristics
are given as follows:

e1(a) = (2, 1) e1(b) = (1, 2) F1 = {{a}; {b}}
e2(a) = (1, 2) e2(b) = (1, 2) F2 = {{a, b}}
e3(a) = (2, 1) e3(b) = (2, 1) F3 = {{a, b}}.

u1(s, x, y) = x2y u2(s, x, y) =
√
xy u3(s, x, y) = log(xy) for any s ∈ S.

Notice that agents’ initial endowments and utility functions are private informa-
tion measurable. Consider the following fully revealing maximin rational expectations
equilibrium

(p(a), q(a)) = (1, 1) (x1(a), y1(a)) = (2, 1) (x2(a), y2(a)) =
(

3
2 ,

3
2

)
(x3(a), y3(a)) =

(
3
2 ,

3
2

)
(p(b), q(b)) =

(
1, 11

17

)
(x1(b), y1(b)) =

(
26
17 ,

13
11

)
(x2(b), y2(b)) =

(
39
34 ,

39
22

)
(x3(b), y3(b)) =

(
45
34 ,

45
22

)
.
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The above fully revaling maximin REE is maximin efficient (and a fortiori weak max-
imin Pareto otpimal) with respect to the information structure G = (Gi)i∈I (see The-
orem 5.4). Of course it is also ex post efficient since it coincides with an ex post
Walrasian equilibrium. On the other hand, we now show that it is not weak maximin
efficient (and a fortiori it is not maximin Pareto optimal) with respect to the initial pri-
vate information structure F = (Fi)i∈I . To this end, consider the following feasible
allocation (t, z)

(t1(a), z1(a)) =
(

33
16 , 1

)
(t1(b), z1(b)) =

(
105
68 ,

13
11

)
(t2(a), z2(a)) =

(
22
16 ,

3
2

)
(t2(b), z2(b)) =

(
79
68 ,

39
22

)
(t3(a), z3(a)) =

(
25
16 ,

3
2

)
(t3(b), z3(b)) =

(
88
68 ,

45
22

)
,

and notice that,

u1(a, t1, z1) = u1(a, t1(a), z1(a)) =

(
33

16

)2

> 4 = u1(a, x1(a), y1(a)) = u1(a, x1, y1)

u1(b, t1, z1) = u1(b, t1(b), z1(b)) =

(
105

68

)2
13

11
>

(
26

17

)2
13

11
= u1(b, x1(b), y1(b)) = u1(b, x1, y1)

u2(a, t2, z2) = u2(b, t2, z2) = min

{√
22

16

3

2
,

√
79

68

39

22

}
=

√
79

68

39

22
>

√
39

34

39

22

= min

{
3

2
,

√
39

34

39

22

}
= u2(b, x2, y2) = u2(a, x2, y2)

u3(a, t3, z3) = u3(b, t3, z3) = min

{
log

(
25

16

3

2

)
, log

(
88

68

45

22

)}
= log

(
25

16

3

2

)
> log

9

4

= min

{
log

9

4
, log

(
45

34

45

22

)}
= u3(b, x3, y3) = u3(a, x3, y3).

Hence, the equilibrium allocation (x, y) is not weak maximin Pareto optimal with
respect to the information structure F = (Fi)i∈I .

2

8.4 Proofs of Section 6
Before proving Proposition 6.5 the following lemma is needed.

Lemma 8.5 Condition (iii) and (∗) in the Definition 6.4, imply that for all i ∈ C,

ui(a, xi(a)) = min
s∈Πi(a)

ui(s, xi(s)) = uΠi
i (a, xi),

and
ui(a, xi(a)) < ui(s, xi(s)) for all s ∈ Πi(a) \ {a}.
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Proof: Assume, on the contrary, there exists an agent i ∈ C and a state s1 ∈ Πi(a) \
{a} such that uΠi

i (a, xi) = mins∈Πi(a) ui(s, xi(s)) = ui(s1, xi(s1)).

Notice that

uΠi
i (a, yi) = min{ui(a, ei(a) + xi(b)− ei(b)); min

s∈Πi(a)\{a}
ui(s, xi(s))}.

If, ui(a, ei(a) + xi(b) − ei(b)) = ui(a, yi(a)) = uΠi
i (a, yi), then in particular

ui(a, yi(a)) ≤ ui(s1, xi(s1)) = uΠi
i (a, xi). This contradicts (iii). On the other hand,

if there exists s2 ∈ Πi(a)\{a} such that ui(s2, xi(s2)) = uΠi
i (a, yi), then in particular

uΠi
i (a, yi) = ui(s2, xi(s2)) ≤ ui(s1, xi(s1)) = uΠi

i (a, xi). This again contradicts
(iii). Thus, for each member i of C, there does not exist a state s ∈ Πi(a) \ {a} such
that uΠi

i (a, xi) = ui(s, xi(s)). This means that

ui(a, xi(a)) = min
s∈Πi(a)

ui(s, xi(s)) = uΠi
i (a, xi),

and
ui(a, xi(a)) < ui(s, xi(s)) for all s ∈ Πi(a) \ {a}. 2

Proof of Proposition 6.5: Let x be a CIC with respect to the information structure
Π and assume on the contrary that there exist a coalition C and two states a and b such
that

(i) Πi(a) = Πi(b) for all i /∈ C,
(ii) ei(a) + xi(b)− ei(b) ∈ R`+ for all i ∈ C, and

(iii) uΠi
i (a, yi) > uΠi

i (a, xi) for all i ∈ C,

where for all i ∈ C,

yi(s) =

{
ei(a) + xi(b)− ei(b) if s = a
xi(s) otherwise.

Notice that from (iii) and Lemma 8.5 it follows that for all i ∈ C,

ui(a, ei(a)+xi(b)−ei(b)) = ui(a, yi(a)) ≥ uΠi
i (a, yi) > uΠi

i (a, xi) = ui(a, xi(a)).

Hence x is not CIC with respect to the information structure Π, which is a contra-
diction. For the converse, we construct the following counterexample. Consider the
economy, described in Example 6.2, with two agents, three states of nature, denoted by
a, b and c, and one good per state denoted by x. Assume that

u1(·, x1) =
√
x1; e1(a, b, c) = (20, 20, 0); F1 = {{a, b}; {c}}.

u2(·, x2) =
√
x2; e2(a, b, c) = (20, 0, 20); F2 = {{a, c}; {b}}.

Consider the allocation

x1(a, b, c) = (20, 10, 10)

x2(a, b, c) = (20, 10, 10).
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We have already noticed that such an allocation is not Krasa-Yannelis incentive
compatible with respect to the initial private information structure F = (F1,F2) (see
Example 6.2), but it is maximin CIC with respect to F (see Remark 6.1). 2

Proof of Theorem 6.6: Let (p, x) be a maximin rational expectations equilibrium.
Since agents take into account the information generated by the equilibrium price p, the
private information of each individual i is given by Gi = Fi ∨ σ(p). Thus, for each
agent i ∈ I , Πi = Gi and uΠi

i = uREEi . Assume on the contrary that (p, x) is not
maximin CIC. This means that there exists a coalition C and two states a, b ∈ S such
that

(i) Gi(a) = Gi(b) for all i /∈ C,
(ii) ei(a) + xi(b)− ei(b) ∈ R`+ for all i ∈ C, and

(iii) uREEi (a, yi) > uREEi (a, xi) for all i ∈ C,

where for all i ∈ C,

yi(s) =

{
ei(a) + xi(b)− ei(b) if s = a
xi(s) otherwise.

Notice that condition (i) implies that p(a) = p(b), meaning that the equilibrium price
is partially revealing.37 Clearly, if p is fully revealing, since for any i ∈ I , Gi =
F , then there does not exist a coalition C and two states a and b such that Gi(a) =
Gi(b) for all i /∈ C. Therefore, any fully revealing MREE is maximin coalitional
incentive compatible. On the other hand, since (p, x) is a maximin rational expectations
equilibrium, it follows from (iii) that for all i ∈ C there exists a state si ∈ Gi(a) such
that

p(si) · yi(si) > p(si) · ei(si) ≥ p(si) · xi(si).

By the definition of yi, it follows that for all i ∈ C, si = a, that is p(a) · yi(a) >
p(a) · ei(a), and hence p(a) · [xi(b) − ei(b)] > 0. Furthermore, since p(a) = p(b) it
follows that p(b) ·xi(b) > p(b) ·ei(b). This contradicts the fact that (p, x) is a maximin
rational expectations equilibrium. 2

Proof of Proposition 6.9: Let (p, x) be a maximin REE and assume on the contrary
that there exist a coalition C and two states a, b ∈ S such that

(I) Fi(a) = Fi(b) for all i /∈ C,
(II) ui(a, xi(a)) = ui(a, xi(b)) for all i /∈ C,
(III) ei(a) + xi(b)− ei(b) ∈ R`+ for all i ∈ C, and

(IV ) ui(a, yi) > ui(a, xi) for all i ∈ C,

where for all i ∈ C,
37Notice that for all i, σ(p) ⊆ Gi = Fi ∨ σ(p). Thus, for all i, p(·) is Gi-measurable. Therefore,

condition (i) implies that p(a) = p(b).
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yi(s) =

{
ei(a) + xi(b)− ei(b) if s = a
xi(s) otherwise.

If (p, x) is a non revealing MREE, then the proposition holds true with no addi-
tional assumptions on utility functions (see Remark 6.2).

I CASE: Assume that for any i ∈ I ui(·, t) is Fi-measurable for each t ∈ R`+.
Observe that if p is partially revealing and Gi(a) \ {a} 6= ∅ for some agent i in C, then
the allocation x is (private) maximin coalitional incentive compatible and hence weak
(private) maximin CIC. Indeed, from Lemma 8.5 and condition (IV), it follows that

uREEi (a, xi) = ui(a, xi) = ui(a, xi(a)) < ui(s, xi(s)) for all s ∈ Fi(a) \ {a}.

In particular the above inequality holds for all s ∈ Gi(a) \ {a}, and this contradicts
Proposition 3.7. Moreover, if for some agent i /∈ C, Gi(a) = Gi(b), then it follows
that p(a) = p(b), and hence p is partially revealing. However, even if utility functions
are not private information measurable, we can conclude that x is (private) maximin
coalitional incentive compatible and hence weak (private) maximin CIC. In fact, from
(IV ) and Lemma 8.5, it follows that for all i ∈ C,

uREEi (a, yi) ≥ ui(a, yi) > ui(a, xi) = ui(a, xi(a)) = uREEi (a, xi).

Therefore, since (p, x) is a maximin REE, from the definition of the allocation y, it fol-
lows that for each i ∈ C, p(a)·yi(a) > p(a)·ei(a), and hence p(a)·xi(b) > p(a)·ei(b),
which is a contradiction because p(a) = p(b).

Thus, let us assume that Gi(a) = {a} for all i ∈ C and Gi(a) 6= Gi(b) for any
i /∈ C. Again from (IV ) and Lemma 8.5, it follows that for all i ∈ C,

uREEi (a, yi) ≥ ui(a, yi) > ui(a, xi) = ui(a, xi(a)) = uREEi (a, xi),

while from (II) it follows that for all i /∈ C,

uREEi (a, yi) = min{ min
s∈Gi(a)\{a}

ui(s, xi(s)), ui(a, yi(a))}

= min{ min
s∈Gi(a)\{a}

ui(s, xi(s)), ui(a, xi(b))}

= min{ min
s∈Gi(a)\{a}

ui(s, xi(s)), ui(a, xi(a))}

= uREEi (a, xi).

Moreover, y is feasible. Indeed, for each state s 6= a, y is feasible because so is x.
On the other hand, if s = a, then∑

i∈I
yi(a) =

∑
i∈I

ei(a) +
∑
i∈I

xi(b)−
∑
i∈I

ei(b) =
∑
i∈I

ei(a).
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Hence, there exists a feasible allocation y such that

uREEi (s, yi) ≥ uREEi (s, xi) for all i ∈ I and all s ∈ S,

with a strict inequality for each i ∈ C in state a. Since x is a maximin REE and
Gi(a) = {a} for all i ∈ C, it follows that

p(a) · yi(a) > p(a) · ei(a) for any i ∈ C.

Moreover, since y is feasible, there exists at least one agent j /∈ C such that

p(a) · yj(a) < p(a) · ej(a).

Notice that
p(s) · yj(a) < p(s) · ej(s) for all s ∈ Gj(a), (24)

because p(·) and ej(·) are Gj-measurable. Define the allocation38 zj as follows:

zj(s) = yj(a) +
1p(s) · [ej(s)− yj(a)]∑`

h=1 p
h(s)

for any s ∈ Gj(a),

where 1 is the vector with ` components each of them equal to one, i.e., 1 = (1, . . . , 1).
Notice that zj(·) is constant in the event Gj(a); for any s ∈ Gj(a) zj(s) � yj(a) and
p(s) · zj(s) = p(s) · ej(s). Therefore, since (p, x) is a maximin REE and uj(·, x) is
Fj-measurable, from the monotonicity of uj(a, ·), it follows that

uREEj (a, xj) ≥ uREEj (a, zj) = uj(a, zj(a)) > uj(a, yj(a)) ≥ uREEj (a, yj) = uREEj (a, xj),

a contradiction.

II CASE: Assume now that the equilibrium price p is fully revealing; hence
Gi(a) = {a} for any i ∈ I . From (IV ) and Lemma 8.5 it follows that for all i ∈ C,

uREEi (a, yi) ≥ ui(a, yi) > ui(a, xi) = ui(a, xi(a)) = uREEi (a, xi),

and hence
p(a) · yi(a) > p(a) · ei(a) for any i ∈ C.

while from (II) it follows that for all i /∈ C,

uREEi (a, yi) = ui(a, xi(b)) = ui(a, xi(a)) = uREEi (a, xi).

Since, we have already observed that y is feasible, we conclude that for some agent
j /∈ C,

p(a) · yj(a) < p(a) · ej(a).

Define the following bundle39

zj(a) = yj(a) +
1p(a) · [ej(a)− yj(a)]∑`

h=1 p
h(a)

� yj(a),

38Notice that for any s ∈ Gj(a),
∑`

h=1 p
h(s) > 0, because p(s) ∈ R`

+ \ {0} for any s ∈ S.
39Notice that

∑`
h=1 p

h(a) > 0, because agents’ utility functions are monotone and consequently p(s) ∈
R`

+ \ {0} for any s ∈ S.
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where 1 is the vector with ` components each of them equal to one, i.e., 1 = (1, . . . , 1).
Notice that p(a) · zj(a) = p(a) · ej(a) and

uREEj (a, zj) = uj(a, zj(a)) > uj(a, yj(a)) = uREEj (a, yj) = uREEj (a, xj),

contradicts the fact that x is a maximin REE allocation. 2

8.5 Counterexamples for general set of priors
As we commented above, Propositions 3.4, 3.7, Theorems 4.3, 5.4, 5.8, and Lemma
8.2 are valid for the general MEU models, provided that all priors are strictly positive.
In this section, we give counterexamples for these results if some priors are not strictly
positive.

Consider the following differential information economy:

I = {1, 2, 3} S = {a, b, c, d} ` = 2
F1 = {{a, b, c}, {d}} F2 = {{a, b, c, d}} F3 = {{a}, {b}, {c}, {d}}

e1(s) = (1, 3) for all s ∈ {a, b, c} e1(d) = (2, 2) e2(s) = (2, 1) for all s ∈ S
e3(a) = (1, 4) e3(b) = (2, 6) e3(c) = (0, 2)
e3(d) = (1, 7) ui(s, x, y) =

√
xy ∀i and ∀s ∈ S

Notice that σ(ui, ei) ⊆ Fi and ui(s, ·) is strict quasi concave. Let

Ms
1 = {α : S → [0, 1] : α(a) + α(b) = 1} for all s ∈ {a, b, c}

Ms
2 = {α : S → [0, 1] : α(a) + α(b) + α(d) = 1} for all s ∈ S.

M1 and M2 are proper subsets of C1 and C2 and they do not contain only positive
priors.

Consider the following allocation {(x∗i (s), y∗i (s))}i∈I,s∈S

(x1(a), y1(a)) =
(

5
4 ,

5
2

)
(x2(a), y2(a)) =

(
5
4 ,

5
2

)
(x3(a), y3(a)) =

(
3
2 , 3
)

(x1(b), y1(b)) =
(

5
4 ,

5
2

)
(x2(b), y2(b)) =

(
5
4 ,

5
2

)
(x3(b), y3(b)) =

(
5
2 , 5
)

(x1(c), y1(c)) =
(

9
4 ,

1
2

)
(x2(c), y2(c)) =

(
1
4 ,

9
2

)
(x3(c), y3(c)) =

(
1
2 , 1
)

(x1(d), y1(d)) =
(

3
2 , 3
)

(x2(d), y2(d)) =
(

5
4 ,

5
2

)
(x3(d), y3(d)) =

(
9
4 ,

9
2

)
and the following price (p(s), q(s)) =

(
1, 1

2

)
for all s ∈ S. Thus, (p, q) is non

revealing and hence Gi = Fi for all i.

We now show that the allocation above is a MREE where agents’ preferences are
represented by (the general) G-S- maximin expected utility. Indeed, {(x∗i (s), y∗i (s))}i∈I,s∈S
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is feasible and it satisfies the budget constraints:

5
4 + 5

4 = 1 + 3
2

5
4 + 5

4 = 2 + 1
2

3
2 + 3

2 = 1 + 2

5
4 + 5

4 = 1 + 3
2

5
4 + 5

4 = 2 + 1
2

5
2 + 5

2 = 2 + 3

9
4 + 1

4 = 1 + 3
2

1
4 + 9

4 = 2 + 1
2

1
2 + 1

2 = 0 + 1

3
2 + 3

2 = 2 + 1 5
4 + 5

4 = 2 + 1
2

9
4 + 9

4 = 1 + 7
2

Moreover it maximizes the MEU subjet to the budget constraint. Indeed, assume
on the contrary that there exists

(I case: i = 1 and s ∈ {a, b, c}) a random bundle (x1(s), y1(s)) such that

inf
α∈Ms

1

∑
s′∈{a,b,c}

√
x1(s′)y1(s′)α(s′) > inf

α∈Ms
1

∑
s′∈{a,b,c}

√
x∗1(s′)y∗1(s′)α(s′). (25)

and
x1(s) +

1

2
y1(s) ≤ 1 +

3

2
for all s ∈ {a, b, c}.

Since for all α ∈ Ms
1, α(c) = 0 and there exists β ∈ Ms

1 such that β(a) = 1 and
β(b) = β(c) = 0, from (25) it follows in particular that

√
x1(a)y1(a) >

√
25

8

x1(a) +
1

2
y1(a) ≤ 5

2
.

Thus, 1
2 (5− y1(a))y1(a) > 25

8 , i.e.,
(
y1(a)− 5

2

)2
< 0 a contradiction.

(II case: i = 1 and s = d) a random bundle (x1(d), y1(d)) such that√
x1(d)y1(d) >

√
9

2

and
x1(d) +

1

2
y1(d) ≤ 3.

This implies that (3− 1
2y1(d))y1(d) > 9

2 , i.e., (y1(a)− 3)
2
< 0 a contradiction.

(III case: i = 2 and s ∈ S) a random bundle (x2(s), y2(s)) such that

inf
α∈Ms

2

∑
s′∈S

√
x2(s′)y2(s′)α(s′) > inf

α∈Ms
2

∑
s′∈S

√
x∗2(s′)y∗2(s′)α(s′). (26)
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and
x2(s) +

1

2
y2(s) ≤ 2 +

1

2
for all s ∈ S.

Since for all α ∈ Ms
2, α(c) = 0 and there exists β ∈ Ms

2 such that β(a) = 1 and
β(b) = β(c) = 0, from (26) it follows in particular that

√
x2(a)y2(a) >

√
25

8

x2(a) +
1

2
y2(a) ≤ 5

2
.

As in the first case, this implies a contradiction.

(IV case: i = 3 and s = a) a random bundle (x3(a), y3(a)) such that

√
x3(a)y3(a) >

√
9

2

and
x3(a) +

1

2
y3(a) ≤ 3.

As in the second case, this implies a contradiction.

(V case: i = 3 and s = b) a random bundle (x3(b), y3(b)) such that

√
x3(b)y3(b) >

√
25

2

and
x3(b) +

1

2
y3(b) ≤ 5.

This implies that (5− 1
2y3(b))y3(b) > 25

2 , i.e., (y3(b)− 5)
2
< 0 a contradiction.

(VI case: i = 3 and s = c) a random bundle (x3(c), y3(c)) such that

√
x3(c)y3(c) >

√
1

2

and
x3(c) +

1

2
y3(c) ≤ 1.

This implies that
(
1− 1

2y3(c)
)
y3(c) > 1

2 , i.e., (y3(c)− 1)
2
< 0 a contradiction.

(VII case: i = 3 and s = d) a random bundle (x3(d), y3(d)) such that

√
x3(d)y3(d) >

√
81

8
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and
x3(d) +

1

2
y3(d) ≤ 9

2
.

This implies that
(

9
2 −

1
2y3(d)

)
y3(d) > 81

8 , i.e.,
(
y3(d)− 9

2

)2
< 0 a contradiction.

Notice that

• the allocation (x∗i (·), y∗i (·)) is not Gi-measurable. Thus, this is a counterexample
for Proposition 3.7 for the general MEU case if the set of priors contains priors
that are not strictly positive.

• agents’ utilities are not constant in the event Gi(s). Thus, this is a counterexam-
ple for Proposition 3.11 for the general MEU case if the set of priors contains
priors that are not strictly positive.

• the allocation (x∗i (·), y∗i (·)) is not ex-post efficient, since it is blocked by

(ti(s), zi(s)) = (x∗i (s), y
∗
i (s)) ∀i ∈ I if s 6= c, and

(ti(c), zi(c)) =

(
5

4
,

5

2

)
∀i ∈ {1, 2}

(t3(c), z3(c)) = (x∗3(c), y∗3(c)) =

(
1

2
, 1

)
.

Indeed (t, z) is feasible, and ui(s, t, z) = ui(s, x
∗, y∗) for all i ∈ I if s 6= c, and

u1(t1(c), z1(c)) =

√
25

8
>

√
9

8
= u1(x∗1(c), y∗1(c))

u2(t2(c), z2(c)) =

√
25

8
>

√
9

8
= u2(x∗2(c), y∗2(c))

u3(t3(c), z3(c)) = u3(x∗3(c), y∗3(c))

Thus, this is a counterexample for Theorem 5.4 for the general MEU case if the
set of priors contains priors that are not strictly positive.

• the allocation (x∗i (·), y∗i (·) is not maximin efficient, since it is blocked by

(ti(s), zi(s)) = (x∗i (s), y
∗
i (s)) ∀i ∈ I if s 6= c, and

(ti(c), zi(c)) = (0, 0) ∀i ∈ {1, 2}
(t3(c), z3(c)) = (3, 6).
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Indeed (t, z) is feasible, and ui(s, t, z) = ui(s, x
∗, y∗) for all i ∈ I if s 6= c, and

inf
α∈Ms

1

∑
s′∈S

√
t1(s′)z1(s′)α(s′) =

√
25

8
= inf
α∈Ms

1

∑
s′∈S

√
x∗1(s′)y∗1(s′)α(s′)

inf
α∈Ms

2

∑
s′∈S

√
t2(s′)z2(s′)α(s′) =

√
25

8
= inf
α∈Ms

2

∑
s′∈S

√
x∗2(s′)y∗2(s′)α(s′)

u3(t3(c), z3(c)) =
√

18 >

√
1

2
= u3(x∗3(c), y∗3(c))

Thus, this is a counterexample for Theorem 5.9 for the general MEU case if the
set of priors contains priors that are not strictly positive.

• the allocation (x∗i (·), y∗i (·)) is not an ex-post Walrasian equilibrium allocation.
Indeed consider for example agent 2 in state c and the bundle

(
5
4 ,

5
2

)
which is

such that √
25

8
>

√
9

8
and

5

4
+

5

4
= 2 +

1

2
.

Thus, this is a counterexample for Theorem 4.6 and Lemma 8.2 for the general
MEU case if the set of priors contains priors that are not strictly positive.
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