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PATIENT, PERFECTLY PARETO PREFERENCES:
PROGRAMMING AND THE PRECAUTIONARY PRINCIPLE

URMEE KHAN, MAXWELL B. STINCHCOMBE

Abstract. Society is an aggregate of present and future generations. We study
stochastic inter-generational programming problems in which similar treatment of
generations in similar situations is possible. For such problems, all patient, inequality
averse societal welfare functions that are perfectly Pareto responsive have the same
optimal policies. When the outcomes of irreversible decisions are partially learnable,
the optimal policies for patience preferences yield a variant of the precautionary
principle. Under mild conditions, optimal policies exist and there is a single Bellman-
like equation characterizing them.
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. . . intergenerational solidarity is not optional, but rather a basic ques-
tion of justice, since the world we have received also belongs to those
who will follow us. (Francis, 2015)

With 500 million years left of acceptable habitat for humans on Earth,
population being stable at 10 billion with an average length of life equal
to 73 years, the ratio of people who will potentially live in the future
to people living now is approximately 10 million to 1. (Asheim, 2010)

As we peer into society’s future, we — you and I, and our government
— must avoid the impulse to live only for today, plundering for our own
ease and convenience the precious resources of tomorrow. We cannot
mortgage the material assets of our grandchildren without risking the
loss also of their political and spiritual heritage. We want democracy
to survive for all generations to come . . . . (Eisenhower, 1953)

1. Introduction

In his Traité de la Culture des Forêts, written in the late 1600’s, Sèbastien Le Prestre
de Vauban, Louis XIV’s defense minister, noted several aspects of the economics and
ecology forests, aspects that complicate the analysis of good societal practices for
foresty.1 First, forests, being a free/easy access resource, were systematically over-
exploited in France. Second, after replanting, forests start being productive in slightly
less than 100 years but don’t become fully productive for 200 years. Third, no private
enterprise could conceivably have so long a time-horizon. From these observations,
Vauban concluded that the only institutions that could, and should, undertake such
projects in society’s interest were the government, in the form of the monarchy at the
time, and the church.2 The calculations behind his conclusion assumed that society
would be around for at least the next 200 years to enjoy the net benefits — he summed
the un-discounted benefits, delayed and large, and compared them to the summed un-
discounted costs, early and small.

Present threats to the free/easy access resources from oceans and forests may also
be threats to civilization as we know it. We still believe, or hope, that the expected
duration of human society is much longer than the timescale of the decisions that affect
the well-being of significant portions of future generations. In the presence of decisions
with extremely long-lasting effects and the mis-match of timescales, notions of patient
preferences for long-run optimality become attractive criteria for decision problems
that affect society, society being conceived of as an aggregate of the generations that
make it up.

We study intergenerational maximization problems in which a conditional equal
treatment assumption is plausible, in which it is reasonable to assume that genera-
tions in similar situations make similar decisions. For such problems, we study so-
cietal welfare functions defined on sequences of numerical measures of generational

1See e.g. the edited collections of his writings (Vauban, 1910) or (Vauban, 2007).
2As well as the government and the church, Vauban identified the possibility that in some settings,

a market-like solution to the various incentives problem might be found by making large enough
stakes in a forest inheritable but not divisible.
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well-being. The concavity of these functions captures inequality aversion, and the im-
munity to bounded permutations of the measures of well-being captures both equity
and patience. These properties alone do not deliver a satisfactory theory.

1.1. Testing Theory with Applications. One cannot fully understand a class of
preferences without knowing their implications in the analysis of problems of inter-
est.3 Equal treatment, patience, and inequality aversion do not deliver a satisfactory
theory of preferences for Markovian decision problems, one needs more. An exam-
ple is the ‘Rawlsian’ preferences on sequences of utilities, preferences represented by
the inequality averse (concave), patient (indifferent to finite permutations) function
SRawls((u0, u1, u2, . . .)) = lim inft↑∞ ut.

Suppose that the stochastic development of state variables, such as the state of
the world’s ecosystem, depends on choices in good as well as in bad states, and that
sacrifices of present utility in bad states make the good states more likely in the future
while sacrifices in the good state make future bad state less likely. Rawslian preferences
ignore all but the welfare of those unlucky generations that find themselves in the worst
states. This means that optimality for such preferences never requires any sacrifices:
in the bad states, sacrifices affect the unluckiest, and are therefore ruled out, no matter
how large the benefit to future generations; in the good states, any action, no matter
how likely it is to lead to the bad state, is an optimal choice.

Rawlsian preferences have an essential flaw — the value of the social welfare func-
tion can be determined by an arbitrarily small proportion of the unluckiest genera-
tions in society. By contrast, for patient, inequality averse utility functions such as
lim infT↑∞

1
T+1

∑T
t=0 ut or lim infβ↑1(1−β)

∑∞
t=0 utβ

t, increasing or decreasing the wel-
fare of any non-vanishing proportion of future generations increases or decreases social
welfare. We develop the general theory of inequality averse, patient preferences with
this kind of Pareto responsiveness.

1.2. Patient Preferences, Dictatorship and the Pareto Principle. The concave
societal welfare functions under study are defined by the property that they have, as
tangent functionals, the limits of expected average utilities of present and future gen-
erations, the limits being taken as the expected duration of society becomes arbitrarily
large. Preferences of this form are patient in the sense that the ordering is indifferent
between O(t) permutations of the generations’ measured well-being. The extensive
social choice literature on the implications of this indifference to permutations has two
main lessons, one concerning the aptly named “dictatorship of the future,” the other
concerning the Pareto principle.

The “present” is a salient finite set of generations, and a societal welfare function
that privileges the future over arbitarily large but still finite versions of the present
seems ethically flawed. The dictatorship of the future (Chichilnisky, 1996) is a con-
sequence of indifference to bounded permutations of the generations’ well-being, a
property that implies that the societal welfare function ignores changes of the welfare

3This methodological position is expressed in (Atkinson, 2001, p. 206), “By applying ethical criteria
to concrete economic models, we learn about their consequences, and this may change our views about
their attractiveness.”
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of any finite number of generations. It is here that equal treatment enters our analysis
— we circumvent such problems by restricting the domain on which the patient pref-
erences are applied to stochastic sequences generated by societal decisions in which
generations in similar situations are treated similarly. If all generations in similar sit-
uations make similar decisions, then the only generations that can be “mistreated”
are those that find themselves in situations that do not occur. For us, the existence of
patient optima with conditional equal treatment properties outweighs the existence of
alternative, non-stationary, ethically suspect optima.

Difficulties with the Pareto principle arise from a second implication of indifference
to bounded permutations (see Fleurbaey and Michel (2003) for extensive references and
a thorough examination). The tangent functionals to a concave function S representing
such preferences must be, up to a positive scaling factor, integrals against purely
finitely additive probabilities. A probability η is purely finitely additive if and only
if for all u = (u0, u1, . . .) with ut > 0 and ut → 0, we have

∫
N0
ut dη(t) = 0. Having

tangents with these properties means S(u) > S(0) or S(v + u) > S(v) cannot happen
— all moves from 0 toward u or toward from v toward v + u have slope 0, a seeming
impossibility result for the existence of Pareto-respecting social welfare functionals.
However, if ut → 0 and η is purely finitely additive, then for all ε > 0, a probability
1 part of society is receiving a utility boost less than ε. By contrast, we require that
S(v + u) > S(v) when and only when a u ≥ 0 delivers a strictly positive amount to a
non-negligible proportion of society.

1.3. Two Classes of Problems. We study the workings of social welfare functions
in two classes of problems: stochastic dynamic decision problems with Markovian
structures; and stochastic dynamic decision problems with partially hidden states
relating to the consequences of irreversible decisions.

Many irreversible decisions have unknown consequences, and one can often gather a
great deal of information about the consequences before the decision is made. In such
problems, the optimal policies for any responsive patient societal welfare function have
two properties: they call for expending societal resources on research until its marginal
value goes to 0; and once no more information is forthcoming, call for making/not
making the decision as the expected value of change in the utility of future generations
is positive/negative.

Some versions of the precautionary principle allocate the expense of the research to
those proposing the potentially irreversible action. Our analysis suggests that such a
policy that may be optimal if potential benefits are privately appropriable while poten-
tial costs are public, but not otherwise. Other versions of the precautionary principle
concern the requisite degree of certainty of benefits before a potentially irreversible
action should be taken. Our analysis suggests that optimal policies should do not
avoid risky decisions, rather, they take risky decisions only after sufficient study.

The main result for the second class of problems is a single version of the Bellman
equation that works for all of our preferences. This is a surprising unification. It works
because patient preferences that ignore welfare gains only acquired by vanishingly small
parts of society have tangent with a property that interacts strongly with Markovian
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decision processes — with probability 1 for a weakly ergodic decision process, the
sequences of utilities are indifferent.

This indifference leads to a single Bellman equation, and this is very good news for
applications and analysis, but it seems to be decidedly mixed news for incorporating
inequality and risk aversion into our analyses. In decision problems where it is feasible
to have different sequences of utilities with the same long run average and different
long run variances, our preferences are indifferent. However, one simple expedient can
remedy this at the expense of slightly complicating the single Bellman equation: make
every generation’s well-being dependent, in a concave fashion, on the well-being of
their children.

1.4. Literature. Das Gupta (several, including SAET 2015 address).
Figuières and Tidball Figuières and Tidball (2012) (taking convex combinations in

policy space, that is, weighted average of LRAC optimal and β optimal).
Fleurbaey and Michel (2003) (their Thm 2 is incompatibility of weak Pareto, pa-

tience and strong continuity, their Thm 5 is the free ultrafilter i.e. purely finitely
additive approach).

Basu and Mitra Basu and Mitra (2003) and Basu and Mitra (2007) are prominent
and thorough statements of the “impossibility” of satisfying the Pareto principle.

Marinacci (1998) (concave with various subsets of translation invariant tangents, the
new criteria use translation invariant tangents that can ignore Pareto optimality in
our sense, this by focusing on far tail, by contrast, ours are “anchored” in the present).

Chichilnisky (1996), weighted combination of β discounting and an integral against
an unspecified purely finitely additive probability, non-stationary optimal policies that
smooth out to stationarity.

Heal (1997) argues that governments look at most decades ahead, (compare Vauban).
Zuber and Asheim (2012), Asheim (2010), Asheim and Zuber (2014) (various con-

cave functionals with/without the presence of the risk of the end of society).
Asheim, Bucholz and Tungodden have a book/paper “Justifying Sustainability”

with insights into patient programming.
Examples with long-term benefits: the armory system and the second industrial

revolution; National Parks; extinctions; DDT and CFC bans; breathability of air in
the Los Angeles basin; microchips and the internet; hybrid crops; genetic engineering;
UN accounting standards that hide these kinds of benefits.

1.5. Outline. Two examples. Theory of patient and inequality averse preferences.
Commentary. Applications of patient preferences to Mdps. Irreversible hidden state
models. Summary and conclusions.

2. Two Examples

We begin with a brief description of the class of preferences under study but defer a
more serious investigation of their properties to the next section. The main structural
result of the investigation characterizes preferences that respect the Pareto ordering
and ignore vanishingly small portions of society in terms of properties of their tangent
functionals. The first example in this section previews the second main result — a
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policy for a Markovian decision problem is S-optimal for one of our patient social
welfare function respecting the Pareto principle if and only if the policy maximizes
the long-run average utility. We then examine the implications of our social welfare
functions for the structure of optimal policies in the presence of risky, potentially
irreversible decisions where research and delay may yield information. In this class of
problems, optimal policies yield a version of the precautionary principle.

2.1. Preferences. The class of bounded sequences of utilities is denoted `∞ and de-
fined as the set of infinite length vectors of real numbers, (u0, u1, u2, . . .), with norm
‖u‖ = supt∈N0

|ut| < ∞ where N0 is {0, 1, 2, . . .}. A social welfare function, is a
function, u 7→ S(u), on the non-negative elements of `∞. We study social welfare func-
tions with five properties. Three properties are standard, continuity, monotonicity, and
concavity/inequality aversion. The properties of concave functions are determined by
the properties of their tangents, and tangents provide the best method for described
the last three properties, patience, respect for the Pareto ordering, and determination
by ergodic means.

2.1.1. Tangents and Patience. If τ represents the random time until the end of society,
then Lτ (u) := E 1

τ+1

∑τ
t=0 ut is a measure of society’s welfare. If Prob(τ ≤M) is small

for large M , then Lτ (·) is a measure of welfare for a patient society, one confident in its
longevity. The mappings u 7→ Lτ (u) are continuous linear functionals on `∞, and we
denote by V the set of accumulation points4 of the sets of Lτ (·) with Prob(τ ≤M) < ε
for large M and small ε.

A social welfare function, S(·), is V-concave if all of its tangents are, possibly after
positive re-scaling, elements of V. The class of V-concave functions demonstrate pa-
tience in the following strong fashion: a permutation, π, of N0 is O(t) if |π(t)−t| = O(t),

that is, if lim supt
|π(t)−t|

t
= 0; uπ denotes the stream of utilities u with the genera-

tional indexes permuted by π; for all order 1 permutations, all u ∈ `∞, and all L ∈ V,
L(u) = L(uπ); any V-concave social welfare function, S(·), inherits this property from
its tangents — S(u) = S(uπ).

The class of V-concave social welfare functions has appeared in the previous liter-
ature: if SV(u) = minL∈V L(u), that is, if the set of tangents at every u is the entire

set V, then for every u, SV(u) = lim infT↑∞
1
T

∑T−1
t=0 ut; using techniques developed

in Keller and Moore (1992), one can identify a set V′ ⊂ V such that for each u,
SV′(u) = minL∈V′ L(u) is equal to lim infβ↑1(1− β)

∑∞
t=0 utβ

t.

2.1.2. Tangents and the Pareto Principle. A set of generations, B ⊂ N0, represents
a non-vanishing proportion of society if `(B) := lim infT

1
T+1

∑T
t=0 1B(t) > 0. Every

L ∈ V has the property that L(1B) ≥ `(B) (where 1B is the indicator function for
the set B). This implies that every concave functional with tangents belonging to V
is Pareto — for all non-vanishing B, all r > 0, and all u ≥ 0, S(u+ r1B) > S(u). A
societal welfare function that respects the Pareto ordering is perfectly Pareto if it
ignores vanishing small parts of society, that is, if `(B) := lim supT

1
T+1

∑T
t=0 1B(t) = 0

implies that S(u+ r1B) = S(u). The proof of Theorem A (below) shows that patient

4A filter of linear functionals, Lα, weak∗ converges to L if Lα(u)→ L(u) for all u.
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societal welfare functions are perfectly Pareto if and only if their tangents that are
positive elements of the closed span of V.

2.1.3. Tangents and Determination by Ergodic Means. A sequence of utilities is weakly
ergodic or Cesaro summable if limT→∞

1
T+1

∑T
t=0 ut exists, and Erg denotes the set

of all weakly ergodic elements of `∞. The following is the essential result linking pa-
tient and perfectly Pareto welfare functions and dynamic programming: u ∈ Erg if
and only if for all L,L′ ∈ V, L(u) = L′(u) = limT→∞

1
T+1

∑T
t=0 ut.

This matters for stochastic dynamic programming because, under mild conditions
on the problem, a long-run average optimal policy exists. Under that policy, there is a
probability 1 set of outcome paths along which the sequence of utilities belongs to Erg
and they all have the same long-run average. Any social welfare function with tangents
in V ranks alternative policies with these properties in exactly the same fashion.

2.2. Climate Change Choices. We now turn to the problem of finding S-optimal
policies in a particular Markovian decision problem.

2.2.1. A Stark Model. Suppose that the world’s ecosystem can be in one of two states,
damaged or undamaged: in the damaged state, the seas, forests and the biota that
survive are unable to produce oxygen and foodstuff in the amounts humans are evolved
to need: in the undamaged state, the seas and forests are able to produce oxygen
concentrations supporting life as we currently know it. In the undamaged state, x =
G, society chooses the transition probability, r to the damaged state, x = B, with
0 < r ≤ r ≤ r < 1. The expected utility of choosing r is uG(r), and higher choices
of r lead to a higher expected utility for the present generation, u′G(r) > 0. In a
parallel fashion, in the damaged state, society chooses the transition probability, s to
the undamaged state with 0 < s ≤ s ≤ s < 1, and higher choices of s lead to lower
expected utility of the present generation, u′B(s) < 0. A generation in a good state
can sacrifice some present utility in order to lower the future probability of disastrous
climate changes, a generation in a bad state must sacrifice some of their present utility
in order to raise the the future probability of a return to a better world.

Starting from the present, t = 0, a policy, w, chooses an r and a s as a function of
the present state. This choice gives rise to a Markov process, Φw = (Φw

t )t∈N0 , taking
either the value G or B. A policy w is S-optimal if it maximizes E (S(Φ)|Φ0 = x) for
each x. The easiest way to develop the optimality equations uses the expression of the
Markov process Φw as a sequence of i.i.d. (independent and identically distributed)
sojourns, here adapted to a two-state process.

If α is an atom of a Markov process, then from any recurrent state, x 6= α, the
process will find its way back to α in a random time with finite expectation. The time
path of the process during periods between a departure from α and a first return to
α is called a sojourn from α because the process is temporarily staying someplace
other than α. In a the present model, either state can be regarded as an atom.

2.2.2. The Long-Run Average Optimality Equations. Because the probabilities r and
s are interior, any policy w = (r, s) leads to the process Φw having a well-defined
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long-run average, ρ = ρw := E limT→∞
1

T+1
u(Φw

t ). For a state x, let hw(x) be the
expected deviations from ρ until the state changes to y while using the policy w,

hw(x) = E (
∑τy−1

t=0 (u(Φw
t )− ρ)|Φ0 = x) (1)

where τy is the random time that Φw first changes from state x to y 6= x given that
Φw

0 = x. The analogue to the Bellman equation for patient optimization is a functional
equation in h(·).

If a policy w is optimal, then after the process leaves a state y, it will spend a random
amount of time in state x. During that sojourn, actions will determine current utility
and the distribution of the random time until the return to the state y. When the
current utilities in the sojourn are above the long-run average, ρw, the tradeoff is
between increasing current utilities and making the sojourn longer. By contrast, when
the current utilities in the sojourn and below the long-run average, the tradeoff is
between sacrificing present utility and making the sojourn shorter.

Let Ew
x be the expectation operator when using a policy w and starting from Φ0 = x.

To characterize an optimal w, we need to find numbers ρ, h(G), and h(B) such that

ρ+ h(G) = max
r∈[r,r]

[uG(r) + Ew
Gh(Φ1)] , and (2)

ρ+ h(B) = max
s∈[s,s]

[
uB(s) + EW

B h(Φ1)
]
. (3)

In parallel with the Bellman equations for a discounted stochastic dynamic program-
ming problem, the problems in (2) and (3) maximize a present utility plus an expected
value of where the process will arrive one step into the future. The difference is the
replacement of the discounted value function with the expected deviation from the
long-run average during the sojourn.

In this model, Ew
Gh(Φ1) = (1−r)h(G)+rh(B) and Ew

Bh(Φ1) = sh(G)+(1−s)h(B).
Therefore, the first order equations (FOCs) for an interior solution to (2) and (3) are

u′G(r) = [h(G)− h(B)] and u′B(s) = [h(B)− h(G)] . (4)

In this particular model, h(G) = (uG(r) − ρ) · E τB, E τB = (1 − r)/r, hw(B) =
(uB(s) − ρ) · E τG, E τG = (1 − s)/s because τB and τG are geometric distributions.
We assume that the payoffs in the good state are higher than those in the bad state,
which leads to uG(r) − ρ > 0 > uB(s) − ρ. When the expected values of the times
until transitions between states are large, we expect [hw(G) − hw(B)] to be a large
positive number. From this, one expects the right-hand sides of these to be too large
(in absolute value) for interior solutions. This would imply that the optimal policy is
as careful as possible in the good state and works as hard as possible to return to the
good states when in the bad state, that is, w∗ = (r, s).5

By contrast, consider the policies that myopically maximize utility in the damaged
state, the policies of the form (r, s). Any such policy maximizes the expected value of
the Rawlsian (lim inf) social welfare function, SRawls because SRawls(u) = uB(s) with
probability 1 for any policy. It is the failure of the Rawlsian ordering, SRawls(·), to

5In this simple model, it is easy to verify that each w = (r, s) gives rise to the long-run average
ρ = ρw(r, s) = s

r+suG(r) + r
r+suB(s). Verifying that the FOCs ∂ρ/∂r = 0 and ∂ρ/∂s = 0 reduce to

(4) is routine.
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respect the Pareto ordering that is at work here. With probability 1, along any path,
there is a non-negligible portion of the generations in the good state, their utility does
not enter in the Rawlsian ordering, and this precludes making tradeoffs between the
welfare of different proportions of the generations that make up society.

2.2.3. The Long-Run S(·)-Optimal Equations. As we argued above, one does not fully
understand a class of preferences or the set of assumptions behind them until one knows
their implications in the analysis of problems of interest. One of the two main results
in this paper shows that a policy for a Markovian decision problem is S-optimal for
a V-concave societal welfare function if and only if the policy maximizes the long-run
average utility. For the analysis of Markovian models, this means that we can appeal
to all of the techniques that have been developed to insure the existence of solutions to
equations such as (2) and (3) (Meyn, 1997, See especially) to find S-optimal policies.
Here, we give some intuitions for this result.

Following a policy w = (r, s), gives rise, with probability 1, to a sequence of utili-

ties u = (u0, u1, u2, . . .) that is ergodic/Cesaro summable, limT→∞
1

T+1

∑T
t=0 ut exists.

Further, with probability 1, the limit is the same along all paths, and it was denoted
ρ = ρw above. Every L in the class V has the property that for all u, u′ with the
same Cesaro sum/long run average, L(u) = L(u′). Putting the pieces together, with
probability 1, all of tangent functionals treat all of the realizations the same. This in
turn means that, restricted to a probability 1 set of realizations, S(u) = ϕ(ρ) where
ϕ(·) is concave and strictly increasing. As a result, maximizing ρ = ρw is necessary
and sufficient for finding an S-optimal policy.

2.3. Patience, Irreversibility, and the Precautionary Principle. In many sto-
chastic dynamic decision problems, the decision maker has only partial information
about the state variables or the consequences of actions. Let us again consider a spe-
cific example to heighten the intuitions about maximizing patient preferences in such
contexts. A hidden state X takes the two values xl < 0 < xh, with strictly positive
probabilities (1 − g) and g, and we assume that EX < 0. When the action a = 1
is taken, utility will go up/down by X forever thereafter and no further actions are
available. When the action a = 0 is taken, utility will be unchanged forever thereafter
and no further actions are available. Until either a = 0 or a = 1 is chosen, the action
s is available. When a = s is chosen, a signal that is perhaps related to X will be
observed. There is a random number of signals informative about the value of X.
Every attempt to observe an informative signal costs c.

The random number of informative signals is another hidden state, M , distributed
with probability pm, m = 0, 1, . . . ,∞ where p∞ > 0 means that the distribution is
incomplete and an infinite amount of information can be gathered because M gives
the number of informative signals that can be observed. If m ≤M , then the signals are
Bernoulli, that is, distributed iid Bern(q) if X = xh, and distributed iid Bern(1− p)
if X = xl, where 1

2
< p, q < 1. If m > N , then signals sN+1, . . . , sm are distributed iid

Bern(π) for some π ∈ (0, 1).

For any patient preferences we have the following version of the precautionary
principle: if there is a positive probability that beliefs will converge to EβX > 0,
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then in any optimal path, signals will be observed until beliefs β have converged to
either EβX > 0 or EβX ≤ 0; and it cannot be optimal to never make a decision.

For s ∈ {0, 1}n, define Bin(r, n)(s) as the probability that a binomial with parame-
ters r and n takes the value s. The posterior beliefs after making m observations and
observing s ∈ {0, 1}m are

β(xh|s,m) = P (M > m)
g ·Bin(q,m)(s)

g ·Bin(q,m)(s) + (1− g) ·Bin(1− p,m)(s)
(5)

+
M∑
n=0

pn
g ·R(q, n,m)(s)

g ·R(q, n,m)(s) + (1− g) ·R(1− p, n,m)(s)

where R(ρ, n,m) = Bin(ρ, n)((si)
n
i=1) ·Bin(π,m− n)((si)

m
i=n+1).

Observation: picking M observations of s followed either by a = 0 or a = 1 so as to
maximize E

∑
t≥0 utδ

t has the property that for δ ↑ 1, the optimal M∗(δ) ↑. If pm = 0

for all m ≥ M , then M∗(δ) ↑ M . If pm > 0 for infinitely many m, then M∗(δ) ↑ ∞.
The proof comes from the observation that for any b > 0,

c ·
∑M

t=0 δ
t

b ·
∑

t>M δt
↓ 0 as δ ↑ 1.

By the tangency arguments, the same result holds for all (continuous, monotonic,
inequality averse, patient, and respecting the Pareto ordering) social welfare functions.

3. Societal Welfare Functions

This section is divided into definitions, statements of the results, and commentary.
Throughout: the set of sequences of numerical measures of well-being is denoted W
and defined as the non-negative elements of `∞; W is endowed with the sup norm,
‖u‖ = supt∈N0

|ut| and the associated norm topology; inequality for u, v ∈W is defined
coordinatewise, u ≥ v iff ut ≥ vt for all t ∈ N0.

For the purposes of interpretation, it is useful to keep in mind the dynamic program-
ming applications. These have ut = v(at,Φt) where at represents the actions taken by
generation t, Φt represents the state of the system faced by generation t, and v(·, ·)
measures the associated welfare. For our patient preferences, the optima for stationary
problems are stationary under mild conditions on the programming model, but this is
not true for the more frequently used definition of patience.

3.1. Definitions. A social welfare function is a continuous function S : W → R+.
We study social welfare function defined by the property that their tangents belong
to a specific class of continuous linear functionals.

3.1.1. V-Concave Social Welfare Functions. We use 〈u, η〉 to denote the bilinear func-
tion (u, η) 7→

∫
u dη, u ∈ `∞ and η a finitely additive probability on N0. A net

(generalized sequence) ηα of probabilities on N0 converges in the weak∗-topology to η
if 〈u, ηα〉 → 〈u, η〉 for all u ∈ `∞. By Alaoglu’s theorem, the set of probabilities on N0

is weak∗ compact.
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Let τ be a random variable taking values in N0. The mapping u 7→ Lτ (u) :=
E 1

τ+1

∑τ
t=0 ut is continuous, linear, positive, and has norm 1. By the usual represen-

tation theorems for continuous linear functionals, there exists a unique probability ητ
such that Lτ (u) = 〈u, ητ 〉 for all u.

Definition 3.1. The class V of continuous linear functionals is

V =
⋂
{cl ({ητ : Prob(τ ≤M) ≤ ε}) : M ∈ N0, ε > 0} (6)

where closure, cl (·), is with respect to the weak∗-topology.

The class V is non-empty (by the finite intersection property), as well as compact
and convex. The tangents will be assumed to belong to [γ+) · V, that is, to the set
{γ′ · η : η ∈ V, γ′ ≥ γ}.

For a social welfare functional S and u ∈ W, the set of tangents to S at u is
denoted DS(u) and defined as the set of continuous linear functionals, L, on `∞, such
that for all v ∈ `∞,

S(v) ≤ S(u) + L(v − u). (7)

Definition 3.2. A social welfare functional is V-concave if for all u ∈ W , there
exists γ > 0 such that every L ∈ DS(u) belongs to [γ+) · V.

3.1.2. Patient Social Welfare Functions. We define the patience of a social welfare
functional using O(t) permutations. The set of integers, negative and non-negative
is denoted Z and defined as {. . . ,−2,−1, 0, 1, 2, . . .}. A O(t) permutation is a 1-

to-1 function π : N0 → Z that is onto N0 and satisfies lim supt
|π(t)−t|

t
= 0. For

u = (u0, u1, u2, . . .) and a O(t) permutation π, define uπ as (uπ−1(0), uπ−1(1), uπ−1(2), . . .).

Definition 3.3. A social welfare function S : W → R+ is patient if S(u) = S(uπ)
for all O(t) permutations π.

Bounded permutations satisfy |π(t)− t| ≤M for all t and some fixed M e.g. π(t) =
t − M . The bounded permutations are a frequently used special case of the O(t)
permutations. We will see that defining patience using only immunity to bounded
permutations does not deliver a satisfactory theory.

3.1.3. Pareto Social Welfare Functions. For B ⊂ N0, `(B) := lim infT
1

T+1

∑T
t=0 1B(t)

and `(B) := lim supT
1

T+1

∑T
t=0 1B(t). Subsets of society with `(B) = 0 are vashingly

small, subsets with `(B) > 0 are not.

Definition 3.4. A social welfare function, S, is Pareto if for all B with `(B) > 0
and all r > 0, S(u + r1B) > S(u), a Pareto S is perfectly Pareto if for all B with
`(B) = 0 and all r > 0, S(u+ r1B) = S(u).

A perfectly Pareto social welfare function is sensitive to utility boosts for non-
negligible portions of society while ignoring utility boosts to negligible portions of
society.
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3.2. Results. There are two results. The first tells us that patience and the Pareto
principle are compatible. The second tells us about that patient preferences are easy
to use for Markovian decision problems.

Theorem A. Any V-concave societal welfare function is patient and perfectly Pareto.

Completing the arguments suggested by the following observations leads to a proof:
let ηT denote the uniform distribution on {0, 1, . . . , T}; for τ a random time, Lτ (u) =

E 1
τ+1

∑T
t=0 ut can be expressed as a convex combination of ηT ’s, Lτ (u) =

∑
T 〈u, ηT 〉P (τ =

T ); an extreme point of this class of distributions has P (τ = T ) = 1 for some T ; the
set V is a compact and convex limit set; from (Keller and Moore, 1992, Theorem 3.1),
the extreme points of V have expressions as uniform distributions on {0, 1, . . . , T} for
infinitely large T ; these linear functionals are patient and perfectly Pareto; finally, S(·)
inherits these properties from its tangents. Details are in the appendix.

A sequence u ∈ `∞ is weakly ergodic (aka Cesaro summable) if Ave(u) :=

limT
1

T+1

∑T
t=0 ut exists. The set of weakly ergodic elements is denoted Erg. The

closed linear subspace Erg is tightly related to the class V.

Lemma 1. u ∈ Erg if and only if for all L,L′ ∈ V, L(u) = L′(u) = Ave(u).

Definition 3.5. A social welfare function is determined by erdogic means on
Erg if for all u, v ∈ Erg, S(u) > S(v) iff Ave(u) > Ave(v).

Theorem B. If S : W → R+ is a V-concave societal welfare function, then there
exists a concave strictly increasing ϕ : R+ → R+ such that for all u ∈ Erg, S(u) =
ϕ(Ave(u)). In particular, any V-concave societal welfare function is determined by
ergodic means on Erg.

The proof works because any concave function is the lower envelope of the affine
functions that majorize it, and for V-concave functions, the linear parts of the majoriz-
ing affine functions, after positive re-scaling, satisfy L(u) = Ave(u) for all u ∈ Erg.
Details are in the appendix.

4. Commentary

Weakening the patience/equity criterion by requiring that the social welfare function
be indifferent between u and uπ only for bounded permutations leads to a theory
violating the conditional equal treatment property. The domain on which such a
theory can be useful replaces the set Erg with the much smaller set of almost convergent
sequences, and this smaller set excludes the use of “most” Markov processes. Finally,
the “linearity” result of Theorem B, that S(u) > S(v) iff Ave(u) > Ave(v) for u, v ∈
Erg, does not destroy the inequality aversion built into the concavity of S(·).

4.1. Violating the Conditional Equal Treatment Property. Our definition of
patience requires that S(u) = S(uπ) for all O(t) permutations. This is a more stringent
requirement than the requirement usually found in the literature, that S(u) = S(uπ)
only for the bounded permutations, those with |π(t) − t| uniformly bounded. The
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corresponding class of tangent functionals grows from V to the the set of all Banach-
Mazur limits, and the use of this larger class of tangents allows social welfare functions
for which optimality requires violations of the equal treatment property.

A continuous linear L : `∞ → R with the properties L(u) ≥ 0 for all u ≥ 0,
L((1, 1, 1, . . .)) = 1, and L(uπ) = L(u) for all u and bounded permutations π is called
a Banach-Mazur limit (Banach, 1978, Ch. II.3). Every Banach-Mazur limit can be
represented as an integral against a purely finitely additive probability, L(u) = 〈u, η〉,
and the set of all such functionals is denoted BM.

Elements of BM\V include accumulation points of uniform distributions on {T ′, . . . , T}
where (T−T ′) becomes unboundedly large and T ′

T
becomes arbitrarily close to 1. Let η

be such an accumulation point. Because η ignores all but the “tail” of the consumption
streams, it simultaneously fails to respect the Pareto criterion and fails to be immune
to O(t) permutations.6 As a result, there are well-behaved stationary Markovian de-
cision problems for which the optima of e.g. the social welfare function S(u) = 〈u, η〉
are non-stationary in a particularly disturbing fashion. The optima involve “feasts”
during a sequence of intervals {T ′n, . . . , Tn} at the expense of “starvation” of the gen-
erations between Tn and T ′n+1. Further, the set B of starving generations has `(B) = 1

because T ′

T
becomes arbitrarily close to 1.

4.2. The Almost Convergent Sequences. Starting with U0 = (u0, u1, u2, . . .), for
each j ∈ N0, define the points U j ∈ `∞ as follows.

U0 u0 u1 u2 u3 . . .
U1 u0+u1

2
u1+u2

2
u2+u3

2
u3+u4

2
. . .

U2 u0+u1+u2
3

u1+u2+u3
3

u2+u3+u4
3

u3+u4+u5
3

. . .
...

...
...

...
... . . .

U j u0+···+uj
j+1

u1+···+uj+1

j+1

u2+···+uj+2

j+1

u3+···+uj+3

j+1
. . .

...
...

...
...

...
. . .

Definition 4.1. u = (u0, u1, u2, . . .) ∈ `∞ is almost convergent to r if for every
ε > 0, there exists J such that for all j ≥ J , every element of U j is within ε of r.

It is clear that any almost convergent u belongs to Erg, however, the set of almost
convergent utilities is too small to contain the outcomes of even the simplest non-
degenerate Markov processes.

Example 4.1. Suppose that for all t ∈ N0, ut is either 0 or 1 and that ut follows a
Markov process: if ut = 0 then ut+1 = 1 with probability α ∈ (0, 1); and if ut = 1 then
ut+1 = 0 with probability β ∈ (0, 1). With probability 1, the realizations of this Markov
chain belong to Erg and Ave(u) = α

α+β
. However, with probability 1, for each j ∈ N0,

each realization contains infinitely many length (j + 1) sequences of 0’s and contain
infinitely many length (j + 1) sequences of 1’s. Therefore each U j contains infinitely
many elements equal to 0 and infinitely many elements equal to 1, hence cannot be
almost convergent.

6The Polya index of Marinacci (1998) has this kind of tail-only sensitivity.

14



The following characterization of almost convergent sequences is (Lorentz, 1948,
Theorem 1). It should be compared to Lemma 1.

Theorem C (Lorentz). u is almost convergent if and only if for every η, η′ ∈ BM,
〈u, η〉 = 〈u, η′〉.

As argued above, it is crucial to test theories with applications. Defining patience
using tangents immune only to bounded permutations results in a theory that can be
fruitfully applied, but only to models in which all optima involve almost convergent
sequences of utilities. This is a slightly larger class than e.g. growth models with
convergent, deterministic sequences of utilities, but seems smaller than one would
wish.

4.3. Concavity and Inequality Aversion. The result of Theorem B, that S(u) >
S(v) iff Ave(u) > Ave(v) for u, v ∈ Erg, could be interpreted as a linearity result, a
repudiation of the inequality and risk aversion built into the concavity of S(·). An
analysis of the programming applications, those with ut = v(at,Φt) where at represents
the actions taken by generation t, Φt represents the state of the system faced by
generation t, shows that this is misleading in at least two senses.

The first, and perhaps most obvious, way in which this is misleading comes from the
observation that Φt is stochastic. Variability in Φt and concavity of v(at, ·) makes the
expected value of ut lower. It is the long-run expected value of the ut that determines
S(u) for patient preferences, and riskier paths yield lower expected utility.

The second way in which this is misleading involves entrainment and/or hysteresis
(For a review of these are other concepts related to irreversibilities, see Perrings and
Brock, 2009). In decision problems with “urn-like” components, early decisions and
early stochastic events determine the long run path of the system.7 When different
long run paths have different long run utilities and these are stochastic, the concavity
of S(·) induces risk aversion over the choice of paths.

5. Applications: Programming and the Precautionary Principle

5.1. MDPs as in Tweedy PIA.

Theorem D. In an MDP with a stabilizing policy, a policy is LRAC optimal iff it is
S-optimal for all concave, uniformly patient S.

Details and proof to be added: stabilizing policies may not exist, they require that
the optima actions and states not wander off; while there are hopes of upper hemi-
continuity kinds of results for policies as the discount factor goes to 1, there are

7In 1953, after Stalin’s death, Dwight D. Eisenhower argued that the world found itself at “. . .
one of those times in the affairs of nations when the gravest choices must be made, if there is to be a
turning toward a just and lasting peace.” He talked of the long-run consequences of present choices,
“Every gun that is made, every warship launched, every rocket fired signifies, in the final sense, a
theft from those who hunger and are not fed, those who are cold and are not clothed. This world in
arms is not spending money alone. It is spending the sweat of its laborers, the genius of its scientists,
the hopes of its children. . . . This, I repeat, is the best way of life to be found on the road the world
has been taking. This is not a way of life at all, in any true sense. Under the cloud of threatening
war, it is humanity hanging from a cross of iron.”
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interesting extinction and related examples of the stark differences in the long-run
distributions.

5.2. State Doubling, or Caring for the Next Generation. The social welfare
functions under study are equivalent to a monotonic transformation of the linear
functional u 7→ L(u) on Erg. Therefore, the concavity of S(·) can have no bite on this
domain, smoothing of inter-generational consumption patterns cannot matter.

A solution is to make generation t’s well-being depend on both their state and actions
as well as the state and actions taken by generation t+ 1 and then to maximize S(·).
In particular, if each generation dislikes their offspring doing worse than they do, this
pushes the solutions toward smoothing.

5.2.1. In the Climate Change Model. More care for the next generation has monotone
comparative statics effects pushing for every lower r and higher s. Can incorporate
resilience and analyze the Poisson-Bellman equations: efforts near tipping points be-
tween different basins of attraction are, optimally, much much higher.

5.2.2. Stochastic Fishery. Comparison of the optimality equation for a stochastic fish-
ery and a stochastic fishery where ut depends on the consumption of t and t+ 1. Will
see emergence of buffer stock, a more cautious approach.

6. Patience and Precaution

6.1. Research Until You Know. Include Deutsch’s Deutsch (2011) argument as
the guess that irreversibility can be undone. This segues nicely to the increased value
of options.

6.2. Option Values. In long-run problems, decisions one can recover from are cost-
less. Deutsch’s argument redux.

7. Summary and Conclusions

Pareto and patience are compatible.
Testing the compatibility with applications leads to O(t) permutations as the defi-

nition of patience.
Under mild conditions, there is one Bellman equation for all the patient preferences,

but this requires recurrence.
When recurrence involves two (or more) large basins of attraction with different

utilities, the optimal efforts near tipping points possibly leading to a worse basin are
much much higher.

The urn models/hysteresis analyses require a more “hands on” analysis.

Appendix A. Proofs

We work in a κ-saturated, nonstandard enlargement of a superstructure V (Z) where
Z contains R and `∞, and κ is a cardinal greater than the cardinality of V (Z). For
nearstandard r ∈ ∗Rk, ◦r ∈ Rk denotes the standard part of r (§II.1 and II.8 Hurd and
Loeb, 1985) or (Ch. 3 Lindstrøm, 1988). The essential result that we use is (Theorem
3.1 Keller and Moore, 1992): if η is an extreme point in the set of Banach-Mazur limits,
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then there exists in interval subset of ∗N0, {T ′, T ′+ 1, . . . , T} with (T −T ′) ' ∞ such
that 〈u, η〉 = ◦〈∗u, UT ′,T 〉 where UT ′,T is the ∗-uniform distribution on {T ′, . . . , T}.
Proof of Theorem A. Let S be a V-concave societal welfare function.

Patience. Pick arbitrary u ∈ `∞ and arbitrary order 1 perturbation π. For L′ ∈
DS(u) and L′′ ∈ DS(uπ), we have

S(uπ) ≤ S(u) + L′(uπ − u) and S(u) ≤ S(uπ) + L′′(u− uπ). (8)

Since L and L′ are positive scalings of elements of V, it is sufficient to show that for
any L ∈ V, L(u−uπ) = 0. Since V is compact and convex, it is sufficient to show that
Lext(u − uπ) = 0 for every extreme Lext ∈ V. From Keller and Moore (1992), if Lext
is an extreme point of V, then there exists an integer T , that is, T ∈ ∗N0 \ N0, such
that for all u ∈ `∞, Lext(u) = ◦〈∗u, ηT 〉 where ηT is the uniform distribution on the
∗integers {0, 1, . . . , T}. The integral of ∗u against ηT is 1

T+1

∑T
t=0
∗ut, and the integral

of ∗ uπ is 1
T+1

∑T
t=0
∗uπt . It is therefore sufficient to show that

d :=
1

T + 1

∣∣∣∣∣
T∑
t=0

∗ut −
T∑
t=0

∗uπt

∣∣∣∣∣ ' 0. (9)

The essential idea is that a measure 1 set of the terms in the first sum also appear in
the second sum and cancel.

Let T ′ denote the integer part of
√
T . By the triangle inequality,

d ≤ 1

T + 1

T∑
t=T ′

|∗ut − ∗uπt |+
1

T + 1

T ′−1∑
t=0

|∗ut − ∗uπt |. (10)

Since |∗ut − ∗uπt | ≤ 2‖u‖, the second term is bounded above by
√
T

T+1
2‖u‖, and this is

infinitesimal. Because π is of order 1, the proportion of the terms in the first term
that fail to cancel each other out is also infinitesimal. In more detail, a sequence
xt → 0 in R iff for all infinite t, ∗xt ' 0. Thus, a permutation π is order 1 iff for

all infinite integers t, |
∗π(t)−t|

t
' 0. Therefore, letting T ′ denote the integer part of√

T , δ := maxt∈{T ′,T}
|∗π(t)−t|

t
' 0. Since π(T ′) ∈ [(1 − δ)T ′, (1 + δ)T ′] and π(T ) ∈

[(1 − δ)T, (1 + δ)T ], at most 2δT of the terms fail to cancel each other out, and
2δ T

T+1
' 0.

Perfectly Pareto. Suppose first that `(B) = lim infT
1

T+1

∑T
t=0 1B(t) > 0. For every

infinite T , 1
T+1

∑T
t=0 1B(t) = 〈∗1B, ηT 〉 ≥ `(B). Because the extreme points of V have

representations as ◦〈·, ηT 〉 for T infinite, for any L ∈ V, L(1B) ≥ `(B). For any
u ∈W, r > 0 and L ∈ DS(u), we have S(u) ≤ S(u + r1B) + L(−r1B). By linearity,
L(−r1B) = −rL(1B) so that S(u) + (> 0) ≤ S(u+ r1B), that is, S(u) < S(u+ r1B).

Now suppose that `(B) lim supT
1

T+1

∑T
t=0 1B(t) = 0. For any infinite T , 1

T+1

∑T
t=0 1B(t) =

〈∗1B, ηT 〉 = 0, hence for any extreme Lext ∈ V, L(1B) = 0, which implies that the same
is true for all L ∈ V. For L′ ∈ DS(u) and L′′ ∈ DS(u+ r1B), we have

S(u+ r1B) ≤ S(u) + L′(r1B) and S(u) ≤ S(u+ r1B) + L′′(−r1B). (11)

Since L′(r1B) = L′′(r1B) = 0, we have S(u+ r1B) ≤ S(u) ≤ S(u+ r1B). �
Proof of Lemma 1.
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Proof. u ∈ Erg iff the sequence 〈u, ηT 〉, T ∈ N0, converges to Ave(u), and this in
turn holds iff for any infinite T ∈ ∗N0, 〈∗u, ηT 〉 ' Ave(u). If u ∈ Erg, then every
extreme Lext ∈ V satisfies L(u) = Ave(u), hence every L ∈ V has this property. If
u 6∈ Erg, then there exists infinite T, T ′ such that ◦〈∗u, ηT 〉 6= ◦〈∗u, ηT 〉, and both of
these functionals belong to V. �
Proof of Theorem B. Let S be a V-concave societal welfare function. Every L′ ∈ DS(u)
is of the form γL for some L ∈ V. Because γL ∈ DS(u) is a tangent to S at u, there
exists a constant κ ∈ R such that κ + γL(v) ≥ S(v) for all v ∈ W with equality for
v = u. Let KG denote the set of (κ, γ) such that κ+ γL(v) ≥ S(v) for all v ∈W and
L ∈ DS(u) for some u. From Lemma 1 for all u ∈ Erg and all L ∈ V, L(u) = Ave(u).
For r ≥ 0, define ϕ(r) = min{κ + γr : (κ, γ) ∈ KG} and note that for u ∈ Erg∩W,
S(u) = ϕ(Ave(u)). The function ϕ(·) is concave because it is the lower envelope of a
collection of affine functions, and it is strictly increasing because, by Theorem A, S(·)
is Pareto. �
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